8080 MACHINE
LANGUAGE
PROGRAMMING
FOR
BEGINNERS

PREFACE

This book is not simply a description of 8080 op-codes and their
definitions, but is rather a course which will lead you step by step
into the basics of machine language programming. Although mach-
ine language may appear difficult at first glance, I believe you will
find this book takes nothing for granted. In writing it, I have as-
sumed you know nothing about programming. As we go along,
everything will be defined for you, and in each chapter you will
write a program or subroutine. In this format you will only be in-
troduced to a few new programming instructions ata time. You will
start by writing simple subroutines, then you will progress to longer
programs, and, as the chapters proceed, you will become familiar
with common 8080 machine language programming instructions.

A lot of care was taken to condense the subject matter covered,
and I hope you won’t find this a wordy text. Because each and
every paragraph is important, you should not try to rush through
the chapters or try to coveralot of pages in a short period of time.

Since I am presenting this material from a beginner’s standpoint,
some of it may be old hat to you, but I wanted to give every bene-
fit to those who are new to this field. Understand that this is a book
on basics, not technique, so I assume you are a beginner with an
8080 microcomputer that you want to learn how to use. If you
find yourself reading something that you already know, read it
through anyway. In that way you may gain a better foundation for
what is to follow.

INTRODUCTION

The first section of Chapter 1 of this book provides a foundation
for your introduction into programming. In these pages I have pro-
vided brief definitions of the basic terms you will be using in the
rest of the book and for as long as you remain associated with com-
puters, These first pages contain vital information, so don’t skim
over them—take the time to absorb what they offer and you will
be better able to appreciate the rest of the book.

CONTENTS

Preface
Introduction
Background and the Output Subroutine
Output a Message 17
The Input Subroutine 23
The Random Number Generator 27
HI-LO 33
NIM 43
BUTTON-BUTTON 55
You're On Your Own 69
Condition Bits 71
10 The Op-Codes: Defined 75
Appendix I 89
The Sum of Numbers 0 to 10
The Roll of Two Dice
Appendix Il 93
A Better Random Number Generator
Appendix III 94
8080 Refrence Table
ASCII Codes 95
Answers to Questions 97
Index 103

VONAN B WN =

1

BACKGROUND
AND THE OUTPUT
SUBROUTINE

THE BINARY SYSTEM

Our decimal number system contains ten integers. They are: 0,
1, 2, 3, 4,5,6,7, 8, and 9. The binary number system contains
only two integers. They are O and 1. In the binary system of num-
bers, a “1” in the lowest (rightmost) column represents a decimal
1. A binary “1”’ in the next column represents a decimal 2. A bi-
nary “1” in the next column represents a decimal 4, and the next
column represents a decimal 8. Study the following table:

decimal binary
0 = 0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111
8 = 1000

Notice that we, as humans, could write any decimal number and
then also write its binary equivalent, but the binary numbers are a
little awkward for us because they take up so much space on paper
(decimal 256 = 100000000 in binary). As it turns out, though, the
binary system is much easier for a computer to handle than our
ten-digit decimal system is.

2 8080 Machine Language Programming for Beginners

Adding binary numbers is even easier than adding decimals:

0 0 1 1
X0 +1 0 +1
=0 =1 =1 =10

Notice that in the last example, a “carry” was performed-the
lowest column filled up, so a ““1”* was carried to the second column.
Can you see that in binary?
011

+001

=100
See if you can answer these questions:

1. Give the equivalents for these numbers:

decimal binary
1 =
0 =
2 =
6 =
5 =
= 11
= 111
= 100

2. How many integers are there in the binary system?
3. What do you think the decimal number 9 would look like in

binary?
4. Add the binary numbers, then write the sums in binary and in
decimal:
000 000 100 001 101 001

001 1010 001 +101 1010 +111

Binary numbers can get very large; when they do, they become
hard for us to remember. For now, learn the first eight binary num-
bers and be able to recognize them at a glance.

BIT

Your computer only understands binary numbers. A bit is a bi-
nary digit or integer and can only be 1 or 0. The binary number
/01101011 contains eight bits.
Thisisabit...1
or thisisa bit...0

Background and the Output Subroutine 3

BYTE

A single bit by itself can only represent two states, a “1” or a
“0,” so in order to make the system more useful, bits are grouped
together to form bytes or words. The 8080 computer always uses
eight-bit bytes, so for your computer a byte is always eight bits of
binary information.

This is a byte ... 11100100
or this is a byte ... 00111101

ADDRESS

An address is a place or location in memory. At each address in
memory, there is one byte of data. To see a particular data byte in
memory, just examine its address. For the 8080 system, an address
is always sixteen bits.

This is an address . . . 00001011,01101111

or this is an address . . . 10110000,10110011
Remember, each address contains one byte of data, and each
address is sixteen bits. As an example, if we look at address
00001011,01101111 we might find byte 11100100.

THE OCTAL CODE

Bytes and addresses are a little hard to remember because they
are so long, so bits are usually grouped as follows:
a typical eight-bit byte
00101011 becomes 00 101 011
and a sixteen-bit address
00000101,01101111 becomes 00 000 101,01 101 111
Now if you remember your binary numbers, you can see how to
code these numbers into octal:
the eight-bit byte
00 101 011 becomes0 5 3
the sixteen-bit address
00000 101,01 101 111 becomes0 0 5,1 5 7
The octal code is very important. Study it closely and answer these
questions before going on;
1. How many bits are in a byte?
2. How many bits are in an address?

4 8080 Machine Language Programming for Beginners

3. Convert these:

binary octal

00000100 =0 0 4
00000011 =
00 001 000 =
01 000 101 =
10 001 001 =
01111000 =

=001

=303

=372

=211

=065

=311

There are other ways to group bytes and addresses, but the octal
code seems to be the easiest for the beginning programmer to under-
stand. For this reason, the rest of this book is based on octal pro-
gramming. The binary numbers used in octal programming are re-
peated as follows. You will need to know them by memory.

decimal binary
0 = 0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111

AND/OR LOGIC

This part is easy! AND/OR logic s a kind of test we will be using
to check our data bits. It is a little like adding two numbers, only
with different rules.

AND: Let’s assume we want to “AND” two bits:
If both bits are 0, the result is 0.
If one bit is | and one bit is 0, the result is 0.
If both bits are 1, the result is 1.

OR: Let’s assume we want to “OR” two bits:
If both bits are 0, the result is 0.
If one bit is 1 and one bit is 0, the resultis 1.
If both bits are 1, the resultis 1.

Backround and the Output Subroutine 5

Remember:
0 0 1
AND 0 AND 1 AND 0 AND 1
IS 0 IS 0 IS O IS1
0 0 1 1
OR 0O OR 1 OR 0 OR 1
IS0 IS 1 IS1 IS1
You can do it with bytes, too:
10001110 11110001 11111111
AND 11000101 _AND 10011000 _AND 00010001
IS 10000100 IS 10010000 IS 00010001
11111111 01010101 11000011
OR 00011000 OR 01011100 OR 00000000
IS 11111111 IS 01011101 IS 11000011

EXCLUSIVE OR

“Exclusive OR” is very much like “OR” logic. It is abbreviated
“XOR,” and the rules are:
If both bits are 0, the result is 0.
If one bit is 1 and one bit is 0, the result is 1.
If both bits are 1, the result is 0.

0 0 1 1
XOR 0 XOR 1 XOR 0 XOR 1
IS0 IS 1 IS 1 IS 0

Look back at the “OR” logic to see the difference between OR
and XOR.

Some examples using bytes:

10001110 11110001 11111111
XOR 11000101 _XOR 10011000 _XOR 00010001
01001011 01101001 11101110
10001110 11110001 11111111

OR 11000101 OR 10011000 OR 00010001
11001111 11111001 11111111

You will need to know the rules for AND, OR, and XOR by
memory.

8080 Machine Language Programming for Beginners

THE COMPUTER

A computer consists of three main elements:

1.

The central processor unit (CPU or MPU) controls the com-
puter. In small systems, it is usually a single integrated cir-
cuit which will “read” your program, decide what you want
done, and do it. The central processor is the brains of your
computer (besides you, of course).

The memory is simply a storage area for data. The compu-
ter’s memory can’t carry out your commands; it can only
store them while they are waiting to be read by the CPU.
Memory can store other data in addition to your program-
ming commands.

The terminal usually consists of a keyboard and a printout
device, both of which let you communicate with the com-
puter. The terminal is usually in a cabinet separate from the
main computer and is connected with wires.

COMPUTER

MEMORY [K—> 8080 CPU > TERMINAL

In some of the newest home computers, all three elements are con-
tained in the same cabinet.

The Central Processor

The central processor has eight registers in it. A register is a
“container” in which data is temporarily stored, and each register
will hold the same amount of data.

The registers are called: B

IO O

L
ACCUMULATOR
and the Condition word

What good are the registers? You will find that registers are nec-
essary in programming.

Backround and the Output Subroutine 7

Machine language programming involves:
Putting data into a register,
or moving data from one register to another,
or retrieving data from a register
Remember:
The registers are all inside the CPU.
The most useful register is the ACCUMULATOR.

In the pages that follow we are going to start looking at the ac-
tual operation of the terminal and computer. The terminal is not
linked directly to the computer—there is a small circuit in between
called an interface. In most 8080 computer systems, the circuit is
a serial interface. With a serial interface, one bit of data at a time is
exchanged from computer to terminal or vice versa. Since we know
that one byte is eight bits, it takes time for a whole byte to be ex-
changed one bit at a time. For this reason, the usual method of data
exchange is the following:

1. Ask for the terminal STATUS byte.

2. Test the STATUS byte to see if the terminal is ready to input

or output data.

3. If the STATUS test says that the terminal is ready, then input
or output the data;if the STATUS test says that the terminal
is not ready, then go back to step 1 and recheck the STATUS.

The rest of this book will assume that your terminal is connected
with a serial interface; the only portion of programming that con-
cerns interfacing, however, is the input/output routine. So ... if
you have some other interface system, just disregard my Input/Out-
put routines, which will be labeled as such, and substitute your
own, MITS and IMSAI 8080 serial systems both use the same in-
put/ouput STATUS routines that I have used in this text.

8 8080 Machine Langage Programming for Beginners

Your Terminal

If you remember from page 6, the terminal lets you communi-
cate with the computer CPU. Each terminal has two numbers as-
sociated with it. I will be using the octal numbers 000 and 001 for
the terminal. Here’s how it works:

If you input from the terminal using the number
000, you will get the terminal STATUS byte. A typ-
ical STATUS byte might look like

01100011
If the first bit is a O, the If the last bit is a 0, the
terminal is ready to dis- terminal is ready to input
play output data. If the data to the CPU. If the
first bit is a 1, the termi- last bit isa 1, the terminal
nal is not ready to display is not ready to input data.

data.

The middle six bits of the STATUS byte might be any combina-
tion of 1’s and 0’s, but they don’t matter to us right now; we only
care about the first or last bit when determining the terminal
STATUS.

If you input from the terminal using the number 001, you will
get the terminal DATA byte. The reason you have to get the
STATUS byte first and then get the DATA is that the computer
will operate much faster than the terminal. Your computer can take
in DATA, or put it out, much faster than the terminal can.

To input DATA from the terminal,
First get the STATUS word using octal number 000.
Wait for that last bit to go from 1 to O.
Then get the DATA using octal number 001.
To output DATA to the terminal,
First get the STATUS word using number 000.
Wait for that first bit to go from 1 to 0.
Then output the DATA using number 001.

You will understand better how this works in just a few pages
when we get into the actual programming codes, but the main thing
to remember is that the terminal can be addressed using two differ-
ent octal numbers, 000 and 001; 000 is used to determine terminal
STATUS, and 001 is used to determine terminal DATA.

The above information could be different for your system—
for instance, you might test two middle bits from the STATUS
word to determine terminal status, or your terminal might be ad-
dressed differently than 000 and 001.

Background and the Output Subroutine 9

THE ASCII CODE

The ASCII codeis justa way to represent a letter of the alphabet
or number using an eight-bit data byte. I have listed the most com-
mon codes here. You do not need to know these by memory, but
take a minute to study the table.

character binary code octal code

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00110000

COVXNAVNPARULNENALIYESCHUIOTOZEN R~ — I QTINOOw >
AN NN WWWRNRPRRNRENRPDNR i e s = O O0OO0OO0COO
OO N UMPAWN—NR—ONTAOAUMPAWN=ONTAMNMBWN— OO WU HWLER -

COOOOCOOO OO ot bt bt bt b b b b b b b b e b b e bt et b e b b

10 8080 Machine Language Programming for Beginners

Your terminal understands only ASCII DATA bytes. The data
byte 01,000,001 is what comes from the terminal DATA line when
you type the letter “A” on the keyboard.

The DATA byte 00,110,010 is what comes from the DATA line
when you type “2”” on the keyboard. Notice the difference between
a binary 2 (00,000,010) and an ASCII ““2” (00,110,010).

If you want to display a *“3” on the terminal, you would have
the computer send out an ASCII ““3,” which is 00,110,011.

Remember the terminal transmits and receives only ASCIL If
you send any other DATA bytes to the terminal besides ASCII
DATA bytes, they probably won’t be displayed.

SHORT QuIZ
11101111 00010001 11110000
AND 10010001 AND 00010000 _AND 00111111
IS IS IS
00011111 11111111 00000000
OR 11001010 OR 10000010 OR 00011000
IS IS IS

1. How many bits are in a byte?
2. How many bits are in an address?
3. Change the binary number 01 000 011 to octal.
4, Change the octal number 303 to binary.
5. In an 8080 computer, where are the eight registers located?
6. What does the STATUS register tell us?
7. In the STATUS byte, which two bits are most important?
8. What do these bits tell us?
9. When inputting or outputting to the terminal,
what octal number is used to ask for STATUS?
what octal number is used to ask for DATA?
10. Which works faster, the computer or the terminal?
11. Why do we need the STATUS register?
12. Look back to page 9 and write down the ASCII code
in octal for the letter “A.”
in binary for the letter “A.”

In your later programming, you may have occasion to write a
program which will put words in alphabetical order. Can you see
anything about the ASCII code on page 9 which might make such
a program fairly easy to write?

Background and the Output Subroutine 11

LET'S START PROGRAMMING!

If you know the material in the previous section, you are ready
to start programming. To run a program, we will first store the pro-
gramming instructions, in order, in memory. Then we will start the
computer at the beginning of the program and run it.

Programming instructions are the machine language commands
that tell the CPU what to do. They are often called op-codes. In
this text the commands will always be in octal. Remember, how-
ever, that octal codes are really just a shorthand way of writing an
eight-bit binary byte; therefore, machine language commands (op-
codes) are eight bits long.

The procedure for writing your program will be to start at ad-
dress 000,000 and store an op-code there; then move on to the
next address 000,001 and store another op-code; and so on until
every command in your program has been stored in memory.

Your first program is listed as follows. You are not expected to
understand it yet, but look it over and notice that each octal ad-
dress contains an octal op-code command. The following section
will explain each program command individually and define its
function.

The purpose of your first program is to display an ASCII char-
acter repeatedly on the terminal. Read the following pages care-
fully, so that you understand how the program is supposed to work,
before running it on page 16. Remember that the STATUS check
was written for a serial interface—if your system uses a parallel in-
terface or some other method, you will have to substitute your
STATUS routine for mine.

Here is the program:

OCTAL ADDRESS OP-CODE EXPLANATION

000,000 333 IN Input

000,001 000 the terminal STATUS byte.
I

000,002 g 346 ANI AND the ACCUMULATOR

000,003 E 200 with 10 000 000.
<

000,004 E 302 JNZ Jump if not zero

000,005 000 to address 000,000.

000,006 000

000,007 076 MVIA Move into the ACCUMULATOR

000,010 101 an ASCII “A.”

12 8080 Machine Language Programming for Beginners

000,011 323 OUT Output

000,012 001 DATA to the terminal.
000,013 303 JMP Jump

000,014 000 to address 000,000.
000,015 000

The first part of the program checks terminal status. Look at the
first six steps:

ADDRESS OP-CODE EXPLANATION

000,000 333 This is the INPUT instruction and it must
always be followed by the terminal number.
The INPUT op-code causes one byte of
DATA (or the STATUS byte) to be moved
from the terminal into the ACCUMULA-
TOR.

000,001 000 This is the terminal number for STATUS.
The STATUS byte is moved into the AC-
CUMULATOR (for now, assume the STA-
TUS byte is 01,100,011).

000,002 346 This is the “AND” ACCUMULATOR op-
code. It must always be followed by one
DATA byte. The byte that follows will be
“ANDed” with the ACCUMULATOR, and
the result will be put into the ACCUMU-
LATOR.

000,003 200 Since the “AND” instruction is followed
by 200, the ACCUMULATOR will be
ANDed with 10,000,000. This is a little
tricky, but let’s look at it:

The ACCUMULATOR

contains STATUS 01 100 011
and we AND it with 10 000 000
so the ACCUMULATOR

now contains 00 000 000

If the STATUS word had been11 100 011
and we AND it with 200 10 000 000
then the ACCUMULATOR

would be 10 000 000

Background and the Output Subroutine 13

When the STATUS byte is ANDed with
10 000 000, we find out if the first bit of
the STATUS byte is a “1” or if it is a “0”;
this tells us if the terminal is ready to ac-
cept output DATA. This concept is impor-
tant.

000,004 302 The JUMP IF NOT ZERO op-code must be
followed by an address. Since an address is
sixteen bits, it must be followed by two
bytes.

000,005 000 The JNZ instruction uses the result of the

000,006 000 AND test just given. If the result of the
AND test was not zero, then the CPU will
jump back to address 000,000 and con-
tinue from there. If the result of the AND
test was zero, then the CPU would not jump
back, but instead it would continue on to
address 000,007.

When the first bit of the STATUS byte goes to zero, then the
terminal is ready to display—and the program continues:

ADDRESS OP-CODE EXPLANATION

000,007 076 MVIA. This command moves one data byte
into the ACCUMULATOR. The MVIA com-
mand must always be followed by one byte.

000,010 101 An ASCII “A” (01 000 001)is moved into
the ACCUMULATOR.

000,011 323 OUT. This instruction takes whatever byte
that is in the ACCUMULATOR and outputs
it to the terminal.

000,012 001 The OUTPUT instruction must always be
followed by the terminal number, which
is 001 for DATA.

000,013 303 JUMP. The JUMP instruction must be fol-
lowed by an address. Since an address is
sixteen bits, it must be followed by two
bytes.

14 8080 Machine Language Programming for Beginners

000,014 000 The CPU will jump back to address 000,000
000,015 000 and continue from there.

You should be able to see that each time the program runs
through, an “A” will be printed on the terminal. Also note that the
program will never get past address 000,015 because each time it
sees the JUMP at 000,013, it will return back to 000,000, which will
start the program all over again. The terminal will be printing A’s as
fast as it can.

Look at this summary:

000,000 333 IN

000,001 000 STATUS This tells the CPU if the ter-
000,002 346 ANI minal is ready to display
000,003 200 10 000 000 DATA.

000,004 302 IJNZ

000,005 000 address 000,000

000,006 000

000,007 076 MVIA This puts an “A” into the
000,010 101 an ASCII “A” | ACCUMULATOR.

000,011 323 OUT This outputs the ACCUMU-
000,012 001 terminal DATA | LATOR to the terminal.

000,014 000 address 000,000

000,013 303 JUMP]Return back to the beginning.
000,015 000

Background and the Output Subroutine 15

e 0ce e oo e o DATAlights
©0C ©6 0O00O0C ®C® ® 00 O0 @ ADDRESS lights

HUNEEREINA N NgUyN switches

stop
B H H B
run examine deposit power

Locate these features on your computer and note:
If a light is on, it means it isa “1.”
If a light is off, it means it is a *“0.”
If a switch is up, it means itisa “1.”
If a switch is down, it means it is a “0.”

PROGRAMMING AN OP-CODE

If you want to store the INPUT instruction 333 (11,011,011) at
address 000,000(00,000,000 00,000,000), do the following.

Flip the RESET switch if you have one.

Put all sixteen switches down.

Flip the EXAMINE switch to EXAMINE.

All the address lights will go off, which means you are look-

ing at address 00,000,000 00,000,000.

Flip the last eight switches to make 11 011 O11.

Flip the DEPOSIT switch to DEPOSIT.

The eight DATA lights will show 11 011 O11.
You have stored 11 011 011 at address 00,000,000 00,000,000.
Note that the DATA lights and ADDRESS lights are separate but
that the switches are used for both DATA and ADDRESSES; and
since DATA is only eight bits, use only the eight switches on the
right for storing DATA.

The preceding method is the way to enter programs into the
computer after they have been written. You flip the RESET switch
once before you start, then examine each address one at a time
and deposit the op-code or DATA that belongs there.

It’s a good idea to get into the habit of checking each address for
the correct op-code after the complete program has been stored in
memory. Programming with switches is a tedious job, and no mat-
ter how careful you are, mistakes will creep in.

16 8080 Machine Language Programming for Beginners

If you understand how the program should work, try it on your
computer. Start at address 000,000 and put the 333 op-code there.
Continue putting each op-code at its address until all sixteen are
there. Then go back and examine address 000,000 and flip the
RUN switch.

There will be a lot of A’s being displayed on the terminal—your
first program is running!

When you have had enough A’s, flip the STOP switch.

How could you change one op-code to make the program print
B’s on the terminal instead of A’s? Try it.

OUTPUT A MESSAGE

The previous chapter acquainted you with the terms and general
operation of your computer. It contained a lot of information;
hopefully, you understood its contents. In Chapter 2, we will write
avery useful short program utilizing part of the program from Chap-
ter 1. Its purpose is to display on the terminal a complete printed
sentence. With this little program, you can display a message on the
terminal rather than just a single letter.

Carriage Return and Line Feed

When DATA is sent to the terminal, it is normally in the form of
ASCII DATA. There are many other ASCII DATA codes besides
just the letters of the alphabet (see Appendix III).

Two of these are:

012, which is line feed and
015, which is carriage return

These two commands are needed when the terminal has printed
an entire line of DATA. When a line has been filled on the screen
(or paper) of the terminal, it must then be told to begin printing at
the beginning of the next line. When using a normal typewriter, if
you return the carriage it will automatically advance to the next
line, but on a computer terminal, you must send two commands—
one to return to the beginning of the line, and one to advance to
the next line. In most cases it does not matter which command is
sent first.

18 8080 Machine Language Programming for Beginners
Here’s the program;
ADDRESS OP-CODE EXPLANATION
000,000 041 LXI H/L Load into the H and L registers
000,001 026 000,026.
000,002 000
000,003 333 | IN INPUT
000,004 000 % STATUS the STATUS byte.
000,005 346 ,, ANI AND the ACCUMULATOR
000,006 200 = with 10 000 000.
000,007 302 EE INZ JUMP if NOT ZERO
000,010 003 & to address 000,003.
000,011 000 |
000,012 176 MOV A,M MOVE the DATA at address H/L
to A.
000,013 376 CPI COMPARE
the ACCUMULATOR
000,014 377 with 11 111 111.
000,015 312 JZ JUMP if ZERO
000,016 015 to location 000,015.
000,017 000
000,020 323 ouT OUTPUT
000,021 001 DATA to the terminal.
000,022 043 INX H/L INCREMENT the address H/L.
000,023 303 JMP JUMP
000,024 003 to address 000,003.
000,025 000
000,026 111 ASCII 1
000,027 040 ASCII space
000,030 114 ASCII L
000,031 111 ASCII 1
000,032 113 ASCII K
000,033 105 ASCII E
000,034 040 ASCII space
000,035 115 ASCII M
000,036 131 ASCIl Y
000,037 040 ASCII space
000,040 103 ASCII C
000,041 117 ASCII O
000,042 115 ASCIT M
000,043 120 ASCII P
000,044 125 ASCII U
000,045 124 ASCII T
000,046 105 ASCII E
000,047 122 ASCII R

Output a Message 19

000,050 012 line feed
000,051 015 carriage return
000,052 377 code for stop

Here’s an explanation for each op-code:

ADDRESS OP-CODE EXPLANATION

000,000 041 LXIH/L This instruction loads the register
pair H and L with the two data
bytes that follow.

000,001 026 026 is loaded into register L.
000,002 000 000 is loaded into register H.
000,003 333 IN These seven instructions are the
000,004 000 STATUS “output STATUS check” that
000,005 346 ANI you learned in Chapter 1. Its pur-
000,006 200 pose is to find out if the terminal
000,007 302 INZ is ready to accept DATA.
000,010 003

000,011 000

000,012 176 MOV AM The MOVE instruction moves
DATA from one place to another.
“A” represents the ACCUMULA-
TOR, and “M” represents the
DATA at address H/L. Hand L
are registers and each register con-
tains one byte, so if we consider
H and L together as sixteen bits,
they can describe an address:
this address is labeled M. The 176
op-code MOVES the DATA at ad-
dress M to the ACCUMULATOR.

000,013 376 CPI The COMPARE IMMEDIATE in-
struction compares the following
byte to the ACCUMULATOR.

000,014 377 11 111 111 is COMPARED to
the ACCUMULATOR.

000,015 312 JZ JUMP if ZERO. In the preceding

000,016 015 paragraph, the ACCUMULATOR

000,017 000 is compared with 377. If they are

the same, the result will be zero

20 8080 Machine Language Programming for Beginners

and the CPU will jump to address
000,015. If they are different,
then operation continues:

000,020 323 ouT OUTPUT
000,021 001 DATA DATA to the terminal.

000,022 043 INX H/L INCREMENT H/L. The address
M is increased by one.

000,023 303 JMP JUMP
000,024 003 back to address 000,003.
000,025 000

Here is a summary:

ADDRESS OP-CODE EXPLANATION
000,000 041 LXIH/L Set up Hand L registers with the
000,001 026 starting address of the message.
000,002 000

000,003 333 IN Check STATUS of the terminal.
000,004 000 STATUS Keep looping here until the ter-
000,005 346 ANI minal is ready, then continue.
000,006 200

000,007 302 INZ

000,010 003

000,011 000

000,012 176 MOV AM Move the DATA stored at address
H/L to the ACCUMULATOR.

000,013 376 CP1 Test to see if the last DATA byte
000,014 377 (377) has been reached.

000,015 312 JZ If the result of this test is zero,
000,016 015 the entire message has been print-
000,017 000 ed and the program stays in this

small loop.

000,020 323 ouT If the result is not zero, the DATA
000,021 001 byte is output to the terminal.

000,022 043 INX H/L The address H/L is increased by
one.

Output a Message 21

000,023 303 JMP Jump back to address 000,012.
000,024 012

000,025 000

000,026 111 ASCII 1
000,027 040 ASCII space
000,030 114 ASCII L
000,031 111 ASCII 1
000,032 113 ASCII K
000,033 105 ASCII E
000,034 040 ASCII space
000,035 115 ASCII M
000,036 131 ASCII Y
000,037 040 ASCII space
000,040 103 ASCII C
000,041 117 ASCII O
000,042 115 ASCII M
000,043 120 ASCII P
000,044 125 ASCII U
000,045 124 ASCII T
000,046 105 ASCII E
000,047 122 ASCII R
000,050 012 line feed
000,051 015 carriage return
000,052 377 stop code

If you understand how the program should work, try running it
on your computer. Store the op-codes at each address (000,000
through 000,052), then examine address 000,000 and run the pro-
gram.

If all goes well, the program will print “I LIKE MY COMPUTER”
on the terminal, and then appear to stop. Actually the computer
is still running; it is continuously looping at addresses 000,015;
000,016; and 000,017. It will continue to do this until you flip the
“stop” switch. This may seem wasteful, but for now it is the only
way to stop the printout.

You must understand the idea that the computer will not do
anything on its own;everything you want it to do must be specified
in your program!

As an exercise, think of a different message and modify the pro-
gram and make it print your message. It can be any length; just re-
member to store 377 at the end so the CPU will know when to
stop printing it. Try it.

This program, as simple as it is, is probably the most useful one
you will ever learn. You will use this as a part of almost every pro-
gram you ever write. The message it prints does not need to be

22 8080 Machine Language Programming for Beginners

limited to only one sentence; you can print pages and pages of text
with it and the terminal will happily display it all, stopping when it
finds a 377.

3

THE INPUT
SUBROUTINE

This chapter deals with the INPUT subroutine. Until now you
have only sent data fo the terminal, butin order for you to commu-
nicate freely with the computer, it must be able to get data from
you. The INPUT routine is a short one:

ADDRESS OP-CODE
000,000 333 IN
000,001 [} 000 STATUS
000,002 o 346 ANI
000,003 & 001 00,000,001
000,004 £ 302 INZ
000,005 000

000,006 _|_ 000

000,007 333 IN
000,010 001 DATA
000,011 323 ouT
000,012 001 DATA
000,013 303 IMP
000,014 000

000,015 000

Almost all major programs require some kind of response from
the person at the terminal, so the INPUT subroutine is usually
needed in any large program.

24 8080 Machine Language Programming for Beginners

Look at the first seven steps. This is the STATUS test; it tells the
CPU when the terminal is ready to input data. Now is a good time
to glance back at pages 0 and 00.

Notice that the INPUT STATUS check is exactly like the QOUT-
PUT STATUS check except that:

To INPUT, we check the RIGHT bit of the STATUS word.
TO OUTPUT, we check the LEFT bit of the STATUS word.

A one bit means that the terminal is not ready, a zero bit means
it is ready*.

STATUS WORD

01100011 Terminal is ready to output but not input.
11100010 Terminal is ready to input but not output.
01100010 Terminal is ready to input or output.

There are no new op-codes in this program.

ADDRESS QOP-CODE EXPLANATION
000,000 333 IN Input
000,001 o 000 STATUS the terminal STATUS byte.
000,002 E 346 ANI AND the ACCUMULATOR
000,003 o 001 with 00,000,001.
000,004 g 302 INZ Jump if not zero
000,005 _L 000 to address 000,000.
000,006 000
000,007 333 IN Input
000,010 001 DATA DATA from the terminal.
000,011 323 OUT Output
000,012 001 DATA DATA to the terminal.
000,013 303 IMP Jump ’
000,014 000 to address 000,000.
000,015 000

A summary: This program first checks the terminal input STA-
TUS word until the right bit become zero. The rightmost bit of the
STATUS word will remain a “one” until someone types a terminal
key. The instant a key is typed, the right STATUS bit goes to a zero
and the CPU moves on to address 000,007. The terminal DATA is
input to the ACCUMULATOR. The ACCUMULATOR DATA is
output to the terminal. The CPU then jumps back to address
000,000 to perform another STATUS check.

*This is one of those places where it might be different for your particular computer.

The Input Subroutine 25

The program will display on the terminal anything that is typed
on the terminal keyboard. It “echoes” what you type.

Have you noticed anything missing from the program? At address
000,011 DATA is output to the terminal—but we didn’t check the
terminal output STATUS. How do we know it is ready to accept
DATA? The answer is simple enough. Your computer and terminal
can process data surprisingly fast; usually each op-code you give it
can be handled in less than 0.00001 seconds. If you typed as fast
as you can on the keyboard, I'll bet you couldn’t do better than
one key every 0.1 seconds. When a key is typed, the computer
completes the whole INPUT routine and outputs the data back to
the terminal much faster than you can type the next key. So—since
you are in effect setting the pace of data coming to the terminal,
and since the terminal can take data much faster than you can type
it, the terminal will always be ready to accept DATA no matter how
fast you can type.

Load the program in memory starting at address 000,000 and run
it. If it runs properly, whatever you type on the terminal will be
displayed.

Take a look at this program:

ADDRESS OP-CODE EXPLANATION
000,000 041 LXI H/L Load register pair Hand L
000,001 100 with address 000,100.
000,002 000
000,003 333 IN
000,004 000 STATUS
000,005 346 ANI
000,006 001
000,007 302 INZ Input STATUS check.
000,010 003
000,011 000
000,012 333 IN Input to the ACCUMULATOR
000,013 001 DATA DATA from the terminal.
000,014 167 MOV M,A Move the DATA in the ACCU-

MULATOR to the memory
address H/L. (M)
000,015 323 OUT Output from the ACCUMULA-
000,016 001 DATA TOR to the terminal.

000,017 043 INX H/L Increment address H/L

26 8080 Machine Language Programming for Beginners

000,020 303 IMP Jump
000,021 003 back to address 000,003.
000,022 000

This one echoes what you type on the terminal just as before;
but it also stores what you type in memory address 000,100 and
on up. If you type “HELLO” on the terminal, memory would

contain:

000,100 110 ASCII H
000,101 105 ASCII E
000,102 114 ASCII L
000,103 114 ASCI L

000,104 117 ASCII O

4

THE RANDOM
NUMBER GENERATOR

Computers are very precise machines. They do exactly what they
are told to do—which means they never do anything on their own.
So how do you get a computer to shuffle an imaginary deck of
cards; or how would a computer pick a number?

The answer is a small program called a “random number genera-
tor (RND). No random number generator really picks random
numbers, but it will put out a string of numbers which looks ran-
dom at first glance. For instance:

21007564331072100756433107

As you can see by close inspection, the number chain does repeat
itself, but if you didn’t have the numbers printed here before you,
you would have a hard time trying to guess what comes after 6.

A random number generator takes one number at a time out of
a string of numbers and puts it into the ACCUMULATOR. With
this new tool, you can effectively ask the computer to “pick a
number.”

The random number generator chosen here is a short program,
but it contains four new op-codes which might need explaining:

RRC Rotate the ACCUMULATOR right. This instruc-
tion will cause the ACCUMULATOR byte to be
shifted one bit to the right.

\

28 8080 Machine Language Programming for Beginners
If ACCUMULATOR byte is 00,101,001
then after RRC it will be 10,010,100

ADDM Add register M to the ACCUMULATOR. Remem-
ber how registers H and L can be paired to form
an address? If H contains 00,000,000 and L con-
tains 00,000,100 then the address H/L is 00,000,
000 00,000,100. The DATA byte at this address
is called register M.

The ADD M instruction adds the ACCUMULA-
TOR byte to register M and puts the sum back in
the ACCUMULATOR:

If ACCUMULATOR byte is 10,111,010
and DATA byte at address H/L is 01,000,010
then after ADD M,

ACCUMULATOR will be 11,111,100

XRAM Exclusive-OR register M with the ACCUMULA-
TOR. The DATA byte at address H/L is Exclusive-
ORed with the ACCUMULATOR, and the result is
put in the ACCUMULATOR:

If ACCUMULATOR byte is 11,001,100
and DATA byte

at address H/L is 00,101,101
then after XRAM,

ACCUMULATOR will be 11,100,001

ORI OR the ACCUMULATOR with DATA byte
00,110,000. The ORI op-code is always followed
by a DATA byte; the byte is ORed with the AC-
CUMULATOR and the result is put in the ACCU-

MULATOR:

If the ACCUMULATOR byte is 00,000,100
then after ORI 060 00,110,000
ACCUMULATOR will be 00,110,100

We turned a binary four (00,000,100) into an
ASCII four (00,110,100).

This program randomly picks a number from 0 to 7 and outputs it
to the terminal:

The Random Number Generator

ADDRESS

000,000
000,001
000,002

000,003

000,004

000,005

000,006

000,007

000,010

000,011

000,012

000,013

000,014

000,015
000,016

000,017
000,020

000,021
000,022
000,023

041
024
000

176

017

206

017

167

043

256

167

346

007

366
060

323
001

303
021
000

OP-CODE EXPLANATION

LXI H/L Load registers Hand L
with 000,024.

MOV AM Move the DATA byte at ad-
dress H/L to the ACCUMULA-
TOR.

RRC Rotate the ACCUMULATOR
byte one bit to the right.

ADD M Add ACCUMULATOR byte to
register M (register M is the
DATA at address H/L).

RRC Rotate ACCUMULATOR right
again.

MOV M,A Move the ACCUMULATOR
byte to the address H/L (regi-
ster M).

INX H/L Address H/L is incremented
by one.

XRA M Register M is Exclusive ORed
with the ACCUMULATOR.

MOV M,A Move the ACCUMULATOR
byte to the address H/L.

ANI AND the ACCUMULATOR
with 00,000,111.

ORI OR the ACCUMULATOR
with 00,110,000.

ouT Output the ACCUMULATOR
to the terminal.

JMP Jump back to address
000,021 and loop here.

30 8080 Machine Language Programming for Beginners

000,024
000,025

In summary:

ADDRESS

000,000
000,001

000,002
000,003

000,004
000,005

000,006
000,007

000,010
000,011

000,012
000,013
000,014

000,015
000,016

000,017
000,020

000,021
000,022
000,023

XXX DATA

XXX DATA
OP-CODE

041 LXI H/L

024

000

176 MOV AM

017 RRC

206 ADD M

017 RRC

167 MOV M,A

043 INX H/L

256 XRA M

167 MOV M,A

346 ANI

007

366 ORI

060

323 ouT

001

303 JMP

021

000

These two locations are used to
temporarily store DATA dur-
ing the program.

EXPLANATION

The DATA byte at address
000,024 is moved into the AC-
CUMULATOR.

The ACCUMULATOR DATA
is changed,

then put back at address
000,024.

The DATA byte at 000,025 is
Exclusive ORed with ACCU-
MULATOR,

then it’s put back at 000,025.

ACCUMULATOR is ANDed
with 00,000,111

(so it can never be larger than
seven).

The ACCUMULATOR, which
is now a number from 000 to
007, is made into an ASCII
number from 060 to 067.

Output the ASCII number
to the terminal.

Loop here.

Assume address 000,024 contains DATA byte 022 (00,010,010),
and address 000,025 contains DATA byte 001 (00,000,001). Now

The Random Number Generator 31

take a piece of scratch paper and pencil, work the program on pa-
per, and find out what ASCII number will be output to the termi-
nal.

The answer is ASCII 064, which is the number “4.”

Load the program into the computer, store 022 at address
000,024 and store 001 at 000,025. Then start at address 000,000
and run the program—you should get a “4” on the terminal. Now
stop the computer, start at 000,000 and run again. This time you
will get a different number between 0 and 7.

Each time the program runs, it changes the data at address
000,024 and 000,025. Since the ASCII number that shows up on
the terminal depends on the data in these two addresses, a differ-
ent number is output each time.

The random number generator has many uses. You can use it to
generate a binary number by omitting the “ORI 060" instruction.

Modify the program so that it will generate an ASCII number
from 060 to 063.

Now make it generate a binary number from 000 to 003.

Instead of manually stopping and starting the computer each
time, how could you change the program to make it print out a
whole string of random numbers?

HI-LO

This section explains the program to play the game HI-LOW. It’s
anumber guessing game in which the computer picks a number from
0 to 7 and you try to guess it. The computer tells you if your guess
is too high or too low. The game continues until you guess the
number. Here is a diagram showing the modular parts of the

program:

— [lnpul a number from the terminal | o

Define the stack 1
Gel a random number and
store it at 000,275
Print “I’'m thinking of a
number - try to guess it.”

and move it to register “B”

Compare the number at 000,275
with the number in register “B”

it positive | it equal

to “inpu

Print “You're
too high.”

Print
“right”

Jump back

to “Begin” to”input”

34 8080 Machine Language Programming for Beginners

Each block in the diagram represents a subroutine; you should
recognize most of them. The only new op-codes needed to com-
bine them into a game program are the CALL and RETURN in-
structions, and you will need to know about the STACK.

The new idea here is that we’re going to write a main program
which uses a smaller subroutine.

MAIN PROGRAM

Op-code

Op-code

Op-code

Op-code

CALL SUBROUTINE
SUBROUTINE / Op-code
Op-code Op-code
Op-code Op-code
Op-code Op-code
Op-code Op-code
Op-code Op-code
CALL Op-code
SUBROUTINE Op-code
Op-code +—m — — — — — — = RETURN

Op-code

The MAIN PROGRAM calls the SUBROUTINE. After the SUB-
ROUTINE has been completed, the MAIN PROGRAM continues at
the next op-code. The SUBROUTINE can be called as many times
as needed, and each time it will return to the MAIN PROGRAM
where it left off.

THE STACK

The STACK is a section of memory where DATA is temporarily
stored. This section of memory is defined by you. To locate the
STACK in memory, you use the instruction LXI STACK POINTER
or LXI SP. The op-code is 061. The LXI SP instruction will de-
fine the highest (or first) STACK address and from then on, as
more DATA is put into the STACK, the DATA will be stored in
consecutive lower addresses.

HI-LO 35

For example: 061 LXI Sp
100
000
ADDRESS
000,074
000,075
000,076 For this op-code,
000,077 the top of the stack would be
000,100 <«——————— here
ADDRESS DATA
000,074
000,075 If an address 000,033 is pushed
000,076 033 onto the STACK, it will be
000,077 000 stored like this
000,100

As DATA is pushed onto the STACK the STACK pointer shifts
down in memory. When address 000,033 is moved onto the STACK
first, DATA 033 is pushed into address 000,076; then DATA 000
is pushed into address 000,077, and the STACK pointer is reduced
by two—the STACK pointer is now 000,076.

ADDRESS DATA

Now if address 000,034 is pushed
onto the STACK, it will be stored

000,074 034 like this
000,075 000 \')
000,076 033

000,077 000
000,100 and the STACK pointer will then
be 000,074
Notice that each time DATA is pushed onto the STACK, the top
of the STACK shifts down. Therefore, the STACK has no set size—
the more DATA put into it, the larger it gets.

36 8080 Machine Language Programming for Beginners

When DATA is taken off the STACK (“popped” off), it comes
off in reverse order. In the example just given, address 000,034
would pop off first, then 000,033.

Getting back to the CALL and RETURN op-codes—when the
CPU sees the CALL instruction, it stores the next op-code address
in the STACK before going to the subroutine that was catled. Af-
ter completing the subroutine, the CPU sees the RETURN op-code,
so it looks into the STACK for the return address. The program
then continues from that address.

When a program will need the STACK, the programmer must de-
fine where the STACK will be located in memory. Usually, the first
op-code in any main program of any length is LXI SP. Always be
sure that the memory area you set aside for the STACK is not being
used for anything else—make sure it’s empty memory. For most
small programs, ten memory addresses are enough for the STACK.

The STACK is a handy place in which the CPU can store AD-
DRESSES temporarily. There are two op-codes which will allow
you to put DATA onto the STACK and pull the DATA back off:
PUSH and POP. I won’t be using the PUSH or POP instructions in
this book, but keep in mind (for future programming) that you can
store DATA temporarily in the STACK.

Here’s the game program. There is a subroutine at address
000,017, so a STACK is needed. Carefully study the program (it’s
a long one), and compare it to the block diagram on page 33.

ADDRESS OP-CODE EXPLANATION
000,000 061 LXI SP 7] Define the top of the STACK
000,001 300 as address 000,300.
000,002 000 |
000,003 041 LXI H/L
000,004 273 -1
000,005 000
000,006 176 MOV AM
000,007 017 RRC
000,010 206 ADDR M
000,011 017 RRC Get a random number
000,012 167 MOV M,A | between O and 7.
000,013 043 INX H/L
000,014 256 XRA M
000,015 167 MOV MA
000,016 346 ANI
000,017 007
000,020 366 ORI
000,021 060 |

HI-LO

000,022
000,023
000,024

000,025
000,026
000,027
000,030
000,031
000,032

000,033
000,034
000,035
000,036
000,037
000,040
000,041
000,042
000,043
000,044
000,045
000,046

000,047
000,050
000,051
000,052

000,053
000,054
000,055

000,056
000,057
000,060

000,061
000,062
000,063

062
275
000

041
140
000
315
117
000

333
000
346
001
302
033
000
333
001
323
001
107

072
275
000
270

312
064
000

362
075
000

372
106
000

37

STA 7 Store the random number
at address 000,275.

LXI H/L]
Print “HI-LOW, I'm thinking

CALL of anumber fromOto7...”

IN i

STATUS

ANI
This INPUTS a number from

INZ the keyboard into the AC-
CUMULATOR and echoes
the number on the terminal.

IN *| It’s exactly the same routine

DATA you learned in Chapter 3.

ouT

DATA

MOV B,A | Move ACCUMULATOR to
register B.

LDA 7 Load the ACCUMULATOR
with the number at address
000,275 and compare it to

CMP B | the number in register B.

JZ Jump if the result is zero
to address 000,064.

JP Jump if the result is positive
to address 000,075.

M Jump if the result is minus
to address 000,106.

38

000,064
000,065
000,066
000,067
000,070
000,071

000,072
000,073
000,074

000,075
000,076
000,077
000,100
000,101
000,102

000,103
000,104
000,105

000,106
000,107
000,110
000,111
000,112
000,113

000,114
000,115
000,116

000,117
000,120
000,121
000,122
000,123
000,124
000,125
000,126
000,127

8080 Machine Language Programming for Beginners

041
253
000
315
117
000

303
000
000

041
240
000
315
117
000

303
033
000

041
225
000
315
117
000

303
033
000

333
000
346
200
302
117
000
176
376

LXI H/L

CALL

JMP]

LXI H/L]

CALL

JMP 1

LXI H/L

CALL

JMP]

IN
STATUS
ANI

INZ

MOV AM

CPI

Print “You got it!!”

Jump back to the beginning.

Print “Too low.”

Jump back to INPUT.

Print “Too high.”

Jump back to INPUT.

7 This SUBROUTINE prints a

message out on the terminal.

It starts with the ASCII
DATA at address H/L and
prints each DATA byte one
letter at a time until it gets to
377 (stop code). Then it re-
turns to the main program.

HI-LO

000,130
000,131
000,132
000,133
000,134
000,135
000,136
000,137

ADDRESS

000,140
000,141
000,142
000,143
000,144
000,145
000,146
000,147
000,150
000,151
000,152
000,153
000,154
000,155
000,156
000,157
000,160
000,161
000,162
000,163
000,164
000,165
000,166
000,167
000,170
000,171
000,172
000,173
000,174
000,175
000,176
000,177
000,200

39

377
310 RZ This “PRINT” routine is
323 OUT exactly like the one you
001 DATA learned in Chapter 2.
043 INX H/L
303
117
000
OP-CODE EXPLANATION
110 ASCII H
111 ASCII 1
040 ASCII space
114 ASCII L
117 ASCII O
127 ASCII W
012 ASCII line feed
015 ASCII carriage return
111 ASCIT 1
047 ASCII °
115 ASCII M
040 ASCII space
124 ASCII T
110 ASCII H
111 ASCII 1
116 ASCII N
113 ASCII K
111 ASCII 1
116 ASCII N
107 ASCII G
040 ASCII space
117 ASCII O
106 ASCII F
040 ASCII space
101 ASCII A
040 ASCII space
116 ASCII N
125 ASCII U
115 ASCII M
102 ASCII B
105 ASCII E
122 ASCIT R
012 ASCII line feed

40 8080 Machine Language Programming for Beginners
000,201 015 ASCII carriage return
000,202 124 ASCII T
000,203 122 ASCII R
000,204 131 ASCII Y
000,205 040 ASCII space
000,206 124 ASCII T
000,207 117 ASCII O
000,210 040 ASCII space
000,211 107 ASCII G
000,212 125 ASCII U
000,213 105 ASCII E
000,214 123 ASCII S
000,215 123 ASCI S
000,216 040 ASCII space
000,217 111 ASCIT 1
000,220 124 ASCII T
000,221 072 ASCII :

000,222 012 ASCII line feed
000,223 015 ASCII carriage return
000,224 377 stop code

000,225 072 ASCII :

000,226 124 ASCII T

000,227 117 ASCII O

000,230 117 ASCII O

000,231 040 ASCII space
000,232 110 ASCII H

000,233 111 ASCIT 1

000,234 056 ASCII .

000,235 012 ASCII line feed
000,236 015 ASCII carriage return
000,237 377 stop cod

000,240 072 ASCII :

000,241 124 ASCII T

000,242 117 ASCII O

000,243 117 ASCII O

000,244 040 ASCII space
000,245 114 ASCII L

000,246 117 ASCII O

000,247 056 ASCII .

000,250 012 ASCII line feed
000,251 015 ASCII carriage return
000,252 377 stop code

HI-LO 41

000,253 072 ASCII :

000,254 131 ASCll Y

000,255 117 ASCII O

000,256 125 ASCII U .

000,257 040 ASCII space

000,260 107 ASCIT G

000,261 117 ASCII O

000,262 124 ASCII T

000,263 040 ASCII space

000,264 111 ASCII 1

000,265 124 ASCII T

000,266 041 ASCII !

000,267 012 ASCII line feed

000,270 015 ASCII carriage return

000,271 012 ASCII line feed

000,272 377 stop code

000,273 213 RND 1 Used for random number
generator

000,274 115 RND 2 Used for random number
generator

000,275 000 STORE Used for temporary storage

000,276 000 STACK

000,277 000 STACK

000,300 000 STACK

When an ASCII carriage return and line feed (015 and 012) are
output to the terminal, it causes the print head to start printing at
the beginning of the next line.

This program is a little longer than the routines we have given up
to now, but if you study it one part at a time, I think you can un-
derstand how it works. Note that over half the program is ASCII
data to be printed out. Many times, especially in game programs,
the ASCII data takes up more memory space thanthe program it-
self.

Run the program.

This is a simple game, but you have learned how to program the
computer to “talk” with you—take your data from the keyboard
and respond accordingly. This simple game contains the basic build-
ing blocks of INPUT, INTERACTION, and OUTPUT that are used
in even the most complex programs.

42

NIM

‘The game of NIM is one of the oldest games known to man.
NIM has many variations, but we are going to write a program to
play the following version:

There are fifteen sticks in a pile.

Each player, on his turn, may remove one, two or three
sticks from the pile.

The player who takes the last stick loses.

The computer will go first, and because of this the computer
will always win—but don’t get discouraged, it’s fun to play the
game and it’s a good lesson in programming.

The logic to make the computer win the game has already been
figured out for you: Basically, the computer looks at how many
sticks you took from the pile, subtracts that number from 4, and
takes the difference. If you take one, it will take three; if you take
two, it will take two; if you take three, it will take one.

Take a look at the block diagram of the game.

44

8080 Machine Language Programming for Beginners

NIM

MAIN PROGRAM

define STACK | «——

INPUT SUBROUTINE

Input DATA from “
the terminal

rﬁint “There are 15 sticks in
a pile. | took 2, 13 left”

ALL Input
Print “g left”

CALL Input

f JUMP back to 000,000 J

If 3, print “You took 3,
I'll take 1”

i

If 2, print “You took 2,
I'll take 2”

i

If 1, print “You took 1,
Pl take 3”

i}

ifnot 1, 2, or 3,
print “Try again”
1

JUMP back
to Input

| BE—

This program contains no new op-codes.

ADDRESS OP-CODE
000,000 061 LXI SP
000,001 200
000,002 001
000,003 041 LXI H/L
000,004 160
000,005 000
000,006 315 CALL
000,007 137
000,010 000

EXPLANATION

:| Define top of STACK.

Print “There are 15 sticks in
a pile; I’ll take 2, 13 left.”

NIM

000,011
000,012
000,013

000,014
000,015
000,016
000,017
000,020
000,021

000,022
000,023
000,024

000,025
000,026
000,027
000,030
000,031
000,032

000,033
000,034
000,035

000,036
000,037
000,040
000,041
000,042
000,043

000,044
000,045
000,046

000,047
000,050
000,051
000,052
000,053
000,054
000,055
000,056

315
047
000

041
100
001
315
137
000

315
047
000

041
112
001
315
137
000

315
047
000

041
124
001
315
137
000

303
000
000

333
000
346
001
302
047
000
333

CALL

LXI H/L T

CALL

CALL

LXI H/L

CALL

CALL

LXI H/L]

CALL

IMP]

IN
STATUS
ANI

INZ

IN

45

Call INPUT.

Print “9 left.”

Call INPUT.

Print “S left.”

Call INPUT.

Print “You lose . . . 1 left.”

Jump back to the beginning.

Input DATA from the termi-
nal and echo it back to the
terminal.

46 8080 Machine Language Programming for Beginners
000,057 001 DATA
000,060 323 ouT
000,061 001 DATA
000,062 376 CPI]
000,063 063 ASCII 3
000,064 312 JZ If 3, jump to address
000,065 112 000,112.
000,066 000]
000,067 376 CPI
000,070 062 ASCII 2
000,071 312 JZ If 2, jump to address
000,072 121 000,121.
000,073 000]
000,074 376 CPI]
000,075 061 ASCI 1
000,076 312 JZ If 1, jump to address
000,077 130 000,130.
000,100 000 J
000,101 041 LXI H/L 7
000,102 042
000,103 001 Ifnot 1,2, 0r 3,
000,104 315 CALL print “Try again.”
000,105 137
000,106 000 J
000,107 303 JMP]
000,110 047 Jump back to input.
000,111 000]
000,112 041 LXI H/L T
000,113 272 |
000,114 000 |
000,115 315 CALL Print “You took 3, I'll
000,116 137 take 1.”
000,117 000
000,120 311 RET J
000,121 041 LXI H/L]
000,122 334
000,123 000

NIM

000,124
000,125
000,126
000,127

000,130
000,131
000,132
000,133
000,134
000,135
000,136

000,137
000,140
000,141
000,142
000,143
000,144
000,145
000,146
000,147
000,150
000,151
000,152
000,153
000,154
000,155
000,156
000,157

000,160
000,161
000,162
000,163
000,164
000,165
000,166
000,167
000,170
000,171
000,172
000,173
000,174

315
137
000
311

041
377
000
315
137
000
311

333
000
346
200
302
137
000
176
376
377
310
323
001
043
303
137
000

012
015
124
110
105
122
105
040
101
122
105
040
061

CALL

RET

LXI H/L]

CALL

RET p

IN
STATUS
ANI

INZ

MOV AM
CPI

STP CODE
RZ

OouT
DATA
INX H/L
JMP

a7

Print “You took 2, I'll
take 2.”

Print “You took 1, I'll
take 3.”

This subroutine prints
DATA out to the terminal
starting at H/L and ending
at the STOP CODE 377.

line feed

carriage return
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
space
ASCII 1

m o

R >

48

000,175
000,176
000,177
000,200
000,201
000,202
000,203
000,204
000,205
000,206
000,207
000,210
000,211
000,212
000,213
000,214
000,215
000,216
000,217
000,220
000,221
000,222
000,223
000,224
000,225
000,226
000,227
000,230
000,231
000,232
000,233
000,234
000,235
000,236
000,237
000,240
000,241
000,242
000,243
000,244
000,245
000,246
000,247
000,250

8080 Machine Language Programming for Beginners

065
040
123
124
111
103
113
123
040
111
116
040
101
040
120
111
114
105
054
012
015
111
047
114
114
040
124
101
113
105
040
062
073
040
061
063
040
114
105
106
124
056
012
015

ASCII 5
space
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
space
ASCII
space
ASCII
ASCII
ASCII
ASCII
ASCIT ,

line feed
carriage return
ASCIT 1
ASCII ’
ASCII
ASCII
space
ASCIL
ASCII
ASCII
ASCII
space
ASCII 2
ASCII
space
ASCIT
ASCII 3
space
ASCII L
ASCII E
ASCII F
ASCII T
ASCII .

line feed
carriage return

nxERO=A®r

me=e e Z

mRP»~

[

NIM

000,251
000,252
000,253
000,254
000,255
000,256
000,257
000,260
000,261
000,262
000,263
000,264
000,265
000,266
000,267
000,270
000,271

000,272
000,273
000,274
000,275
000,276
000,277
000,300
000,301
000,302
000,303
000,304
000,305
000,306
000,307
000,310
000,311
000,312
000,313
000,314
000,315
000,316
000,317
000,320
000,321
000,322
000,323

131
117
125
122
040
124
125
122
116
056
056
056
056
056
012
015
377

072
040
040
131
117
125
040
124
117
117
113
040
063
073
012
015
111
047
114
114
040
124
101
113
105
040

49

ASCIL
ASCII
ASCII
ASCI1
space
ASCII
ASCII
ASCII
ASCII
ASCII .
ASCII .
ASCII .
ASCII .
ASCII .
line feed
carriage return
stop code

zZxmcHd GO~

ASCII :
space
space
ASCII
ASCII
ASCIL
space
ASCII
ASCII
ASCII
ASCIL
space
ASCII 3
ASCII ;

line feed
carriage return
ASCII 1
ASCII ’
ASCII L
ASCII L
space

ASCII T
ASCII A
ASCII K
ASCII E
space

ROOH cox

50

000,324
000,325
000,326
000,327
000,330
000,331
000,332
000,333

000,334
000,335
000,336
000,337
000,340
000,341
000,342
000,343
000,344
000,345
000,346
000,347
000,350
000,351
000,352
000,353
000,354
000,355
000,356
000,357
000,360
000,361
000,362
000,363
000,364
000,365
000,366
000,367
000,370
000,371
000,372
000,373
000,374
000,375
000,376

000,377

8080 Machine Language Programming for Beginners

061
056
056
056
056
012
015
377

072
040
040
131
117
125
040
124
117
117
113
040
062
073
012
015
111
047
114
114
040
124
101
113
105
040
062
056
056
056
056
056
012
015
377

072

ASCII 1
ASCII .
ASCH .
ASCII .
ASCII .

line feed
carriagé return
stop code

ASCII :
space
space
ASCIL
ASCII
ASCII
space
ASCII
ASCITL
ASCII
ASCII
space
ASCII 2
ASCIIT ;

line feed
carriage return
ASCII 1
ASCII °
ASCIT
ASCII
space
ASCII
ASCIL
ASCIIL
ASCIIL
space
ASCII 2
ASCII .
ASCII .
ASCII .
ASCII .
ASCII .

line feed
carriage return
stop code

ASCIT

ROOH Qo<

mRPp-H o

NIM

001,000
001,001
001,002
001,003
001,004
001,005
001,006
001,007
001,010
001,011
001,012
001,013
001,014
001,015
001,016
001,017
001,020
001,021
001,022
001,023
001,024
001,025
001,026
001,027
001,030
001,031
001,032
001,033
001,034
001,035
001,036
001,037
001,040
001,041

001,042
001,043
001,044
001,045
001,046
001,047
001,050
001,051
001,052
001,053
001,054

040
040
131
117
125
040
124
117
117
113
040
061
073
012
015
111
047
114
114
040
124
101
113
105
040
063
056
056
056
056
056
012
015
377

012
015
131
117
125
040
115
125
123
124
040

51

space
space
ASCII
ASCII
ASCIT
space
ASCII
ASCII
ASCII
ASCII
space
ASCII 1
ASCII ;

line feed
carriage return
ASCII 1
ASCII ’
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
space
ASCII 3
ASCII .
ASCII .
ASCII .
ASCII .
ASCII .

line feed
carriage return
stop code

ROOH cCcoO~

el ol o

line feed
carriage return
ASCII
ASCIL
ASCII
space
ASCII
ASCII
ASCII
ASCII
space

Hwnag cCox

52

001,055
001,056
001,057
001,060
001,061
001,062
001,063
001,064
001,065
001,066
001,067
001,070
001,071
001,072
001,073
001,074
001,075
001,076
001,077

001,100
001,101
001,102
001,103
001,104
001,105
001,106
001,107
001,110
001,111

001,112
001,113
001,114
001,115
001,116
001,117
001,120
001,121
001,122
001,123

001,124
001,125

8080 Machine Language Programming for Beginners

124
101
113
105
040
061
054
040
062
054
040
117
122
040
063
012
012
015
377

071
040
114
105
106
124
012
012
015
377

065
040
114
105
106
124
012
012
015
377

061
040

ASCIL
ASCII
ASCII
ASCII
space
ASCII
ASCII ,
space

ASCII 2
ASCIIT ,
space

ASCIT O
ASCIT R
space

ASCII 3

line feed

line feed
carriage return
stop code

R >

—

ASCII 9
space

ASCII L
ASCII E
ASCII F
ASCII T

line feed

line feed
carriage return
stop code

ASCII 5
space

ASCII L
ASCII E
ASCIL F
ASCII T

line feed

line feed
carriage return
stop code

ASCII 1
space

NIM 53

001,126 114 ASCII L
001,127 105 ASCII E
001,130 106 ASCII F
001,131 124 ASCII T
001,132 055 ASCH —
001,133 055 ASCII —
001,134 055 ASCII —
001,135 131 ASCII Y
001,136 117 ASCII O
001,137 125 ASCII U
001,140 040 space
001,141 114 ASCII L
001,142 117 ASCII O
001,143 123 ASCII S
001,144 105 ASCII E
001,145 012 line feed
001,146 015 carriage return
001,147 124 ASCII T
001,150 122 ASCII R
001,151 131 ASCIT Y
001,152 040 space
001,153 101 ASCII A
001,154 107 ASCII G
001,155 101 ASCII A
001,156 111 ASCII I
001,157 116 ASCII N
001,160 072 ASCII :
001,161 012 line feed
001,162 012 line feed
001,163 015 carriage return
001,164 377 stop code
Notice that in this game, just as in HI-ILOW, the ASCII text is the
major part of the program.
Run the program.
A good exercise, if you have time, would be to rewrite the pro-
gram so that there are eighteen sticks in the pile to start with—the
computer takes one stick and the play continues from there.

7
BUTTON-BUTTON

This final game program is called BUTTON-BUTTON. The game
can actually be played without a computer, but as an interactive
game with the computer it’s a good one.

Eight people sit in a circle with you in the center:

One of them has a button hidden in his hand and your job is to
guess who has it. It’s harder than you might think because the per-
son with the button will sometimes pass it.

THE PROGRAM

The computer picks a random number from 0 to 7 and stores it
in register B. If random number 3 is chosen, then person 3 “has the
button.” If the button gets passed to another person, then the
computer adds or subtracts one from register B—so either person
2 or person 4 has the button now. When the button gets passed,
half the time the computer will add one to register B and half the
time it will subtract one from register B. This is accomplished by
getting another random number—if the number is 3,2,1, or 0,

56 8080 Machine Language Programming for Beginners

the computer adds one to register B; if the number if 4, 5, 6, or 7,
the computer subtracts one from register B.

You will notice the op-code ANI 007 several times in the program.
Here’s the reason: If person 7 has the button, then register B con-
tains 00,000,111. Now if the button gets passed, the computer
adds or subtracts one from register B. If it subtracts one, then reg-
ister B contains 00,000,110, which is person 6. But if the computer
adds one to register B, then B contains 00,001,000, which is 8!
We want it to contain 00,000,000 because next to person 7 sits
person 0. ANDing register B with 00,000,111 will ensure that it
always contains a number from O to 7.

BUTTON-BUTTON BLOCK DIAGRAM

Get a random number
and move it to B

Print "Who’s
got the button?”

input your guess

from the terminal
Compare it
with register B

Print
“Right you are!”

Compare your guess |__) Print "My neighbor has it;
+1 with register B whoever has it passes it.”

[

Print *I don’t have it.”

—>

Pass the button (add 1
to the number in register B)

BUTTON-BUTTON 57

THE NOP

The only new op-code in this program is NOP, {000]. The in-
struction means “no operation”; when used in a program, it does
absolutely nothing. When the CPU finds a NOP in the program, it
skips over it and continues with the next instruction. The value of
‘the NOP instruction is in writing programs—when you start writing
programs for yourself, you should include NOP op-codes spaced
throughout the program so that if changes are needed after the pro-
gram is finished, there will be room.

I've included two NOP’s in BUTTON-BUTTON to show that
they don’t affect the operation of the program; when you begin
writing programs, be sure to throw in a generous number of NOP’s
(usually in groups of two or three).

The value of the NOP will become very clear if you ever write a
long program and then discover you need to add an op-code some-
where in the middle.

ADDRESS OP-CODE EXPLANATION
000,000 061 LXI SP

000,001 200 Define the STACK.

000,002 001]

000,003 315 CALL 7

000,004 202 Get a random number and
000,005 000 move it to register B.

000,006 107 MOV B,A |

000,007 041 LXI H/L

000,010 220

000,011 000 Print “BUTTON-BUTTON,
000,012 315 CALL who’s got the button?”
000,013 161

000,014 000 .

000,015 315 CALL

000,016 125 Input a number from the
000,017 000 J terminal.

000,020 270 CMP B Compare it with register B.
000,021 312 JZ

000,022 114 If they’re the same, jump to
000,023 000 000,114.

58 8080 Machine Language Programming for Beginners

000,024 074 INR A T This checks to see if the neigh-

000,025 346 ANI bor has the button. We add 1
000,026 007 to the player’s guess and com-
000,027 270 CMP B pare it with register B—if they
000,030 312 JZ compare, then Jump

000,031 054 to address 000,054

000,032 000 d

000,033 075 DCR A T We added 1 to the player’s
000,034 075 DCR A guess above, SO now we sub-
000,035 346 ANI tract 2 from it and compare
000,036 007 that to register B. Again, if
000,037 270 CMP B they compare,

000,040 312 JZ Jump to 000,054.

000,041 054

000,042 000 4 (These two routines take the

player’s guess, the ACCUMU-
LATOR, and compare his two
neighbors with register B.)

000,043 041 LXI H/L

000,044 274

000,045 000 Print “I don’t have it; who-
000,046 315 CALL ever has it, keeps it.”

000,047 161

000,050 000 B

000,051 303 JMP]

000,052 007 Jump back to 000,007.

000,053 000 |

000,054 041 LXI H/L T

000,055 363

000,056 000 Print “My neighbor has it;
000,057 315 CALL whoever has it, passes it.”
000,060 161

000,061 000 4

000,062 315 CALL 7 This routine passes the button

000,063 202 to one of the neighbors—in ‘-
000,064 000 other words, it adds or sub-
000,065 376 CPI tracts 1 from register B. Half
000,066 003 the time it adds 1, and half
000,067 362 JP the time is subtracts 1. It does B

000,070 102 this by CALLing the random

BUTTON-BUTTON 59

000,071 000 number generator which puts
000,072 170 MOV AB a number from 0 to 7 in the
000,073 075 DCR A ACCUMULATOR. It then
000,074 346 ANI compares the number with 3.
000,075 007 Half the time the result will be

000,076 107 MOV B,A | positive, so it Jumps to
000,102, which is the routine
that adds 1 to register B;
otherwise it subtracts 1.

000,077 303 JMP Jump back to address
000,100 007 000,007
000,101 000 J

000,102 170 MOV AB 7
000,103 074 INR A

000,104 346 ANI This routine adds 1 to
000,105 007 register B.

000,106 107 MOV B,A

000,107 303 JMP 7 Jump back to address
000,110 007 000,007.

000,111 000]

000,112 000 NOP] No operation.
000,113 000 NOP No operation.
000,114 041 LXI H/L 7

000,115 070

000,116 001

000,117 315 CALL Print “Right you are!”
000,120 161

000,121 000 .

000,122 303 JMP 1

000,123 000 Jump back to the beginning.
000,124 000 _

000,125 333 IN b
000,126 000 STATUS
000,127 346 ANI
000,130 001

000,131 302 JNZ Input a number into the
ACCUMULATOR.

60

000,132
000,133
000,134
000,135
000,136
000,137
000,140
000,141
000,142
000,143
000,144

000,145
000,146
000,147
000,150
000,151
000,152
000,153
000,154

000,155
000,156
000,157
000,160

000,161

000,162
000,163
000,164
000,165
000,166
000,167
000,170
000,171
000,172
000,173
000,174
000,175
000,176
000,177
000,200
000,201

125
000
333
001
323
001
376
070
372
156
000

041
122
001
315
161
000
303
125

000
346
007
311

333
000
346
200
302
161
000
176
376
377
310
323
001
043
303
161
000

IN
DATA
OouT
DATA
CPI
ASCII 8
M

LXI H/L

CALL

JMP

ANI

RET .

IN 7
STATUS
ANI

JNZ

MOV AM
CPI

STOP CODE
RZ

ouT
DATA

INX H/L

8080 Machine Language Programming for Beginners

This is the INPUT subroutine
which takes a number from
the keyboard and echoes it
back out on the terminal.

The number input from the
terminal can’t be larger than
7, so the ACCUMULATOR is
compared with 8;if the num-
is 7 or smaller, then the CPU
jumps to 000,156.

If the number is 8 or larger,
Print “There’s no one here
with that number.”

Then Jump back to Input
(000,125).

If the number is 7 or smaller,
AND it with 00,000,111.
then Return.

Print subroutine.

BUTTON-BUTTON

000,202
000,203
000,204
000,205
000,206
000,207
000,210
000,211
000,212
000,213
000,214
000,215
000,216
000,217

000,220
000,221
000,222
000,223
000,224
000,225
000,226
000,227
000,230
000,231
000,232
000,233
000,234
000,235
000,236
000,237
000,240
000,241
000,242
000,243
000,244
000,245
000,246
000,247
000,250
000,251
000,252
000,253
000,254

041
170
001
176
017
206
017
167
043
256
167
346
007
311

012
012
015
052
102
125
124
124
117
116
055
102
125
124
124
117
116
052
012
015
127
110
117
047
123
040
107
117
124

LXI H/L

MOV AM
RRC
ADDR M
RRC
MOV M,A
INX H/L
XRA M
MOV M,A
ANI

RET

-

Random number
subroutine.

line feed

line feed
carriage return
ASCII *
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCIH
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCIT
line feed
carriage return
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCIIL
ASCII

*ZO-HAOw | ZOHHAOW

v rom=

~S0o0

61

generator

62

000,255
000,256
000,257
000,260
000,261
000,262
000,263
000,264
000,265
000,266
000,267
000,270
000,271
000,272
000,273

000,274
000,275
000,276
000,277
000,300
000,301
000,302
000,303
000,304
000,305
000,306
000,307
000,310
000,311
000,312
000,313
000,314
000,315
000,316
000,317
000,320
000,321
000,322
000,323
000,324
000,325
000,326
000,327

8080 Machine Language Programming for Beginners

040
124
110
105
040
102
125
124
124
117
116
077
012
015
377

072
127
110
117
040
115
105
077
012
015
111
040
104
117
116
047
124
040
110
101
126
105
040
111
124
041
012
015

space
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCIT
ASCII
ASCII
ASCII ?

line feed
carriage return
stop code

ZOHHCw mIm=

ASCII
ASCIT W
ASCII H
ASCII O
space

ASCII M
ASCII E
ASCII ?

line feed
carriage return
ASCII 1
space
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
space
ASCII 1
ASCII T
ASCII !

line feed
carriage return

vZov

m<»Tm A

BUTTON-BUTTON 63
000,330 127 ASCII W
000,331 110 ASCII H
000,332 117 ASCII O
000,333 105 ASCII E
000,334 126 ASCII V
000,335 105 ASCII E
000,336 122 ASCII R
000,337 040 space
000,340 110 ASCII H
000,341 101 ASCII A
000,342 123 ASCII S
000,343 040 space
000,344 111 ASCII 1
000,345 124 ASCII T
000,346 040 space
000,347 113 ASCII K
000,350 105 ASCII E
000,351 105 ASCII E
000,352 120 ASCII P
000,353 123 ASCII S
000,354 040 space
000,355 111 ASCII 1
000,356 124 ASCII T
000,357 056 ASCII .
000,360 012 line feed
000,361 015 carriage return
000,362 377 stop code
000,363 072 ASCII :
000,364 111 ASCII 1
000,365 040 space
000,366 104 ASCII D
000,367 117 ASCII O
000,370 116 ASCII N
000,371 047 ASCII °
000,372 124 ASCII T
000,373 040 space
000,374 110 ASCII H
000,375 101 ASCII A
000,376 126 ASCII V
000,377 105 ASCIT E
001,000 040 space
001,001 111 ASCII 1
001,002 124 ASCII T
001,003 012 line feed

64

001,004
001,005
001,006
001,007
001,010
001,011
001,012
001,013
001,014
001,015
001,016
001,017
001,020
001,021
001,022
001,023
001,024
001,025
001,026
001,027
001,030
001,031
001,032
001,033
001,034
001,035
001,036
001,037
001,040
001,041
001,042
001,043
001,044
001,045
001,046
001,047
001,050
001,051
001,052
001,053
001,054
001,055
001,056
001,057
001,060

8080 Machine Language Programming for Beginners

015
115
131
040
116
105
111
107
110
102
117
122
040
104
117
105
123
056
012
015
102
125
124
040
127
110
117
105
126
105
122
040
110
101
123
040
111
124
040
120
101
123
123
105
123

carriage return
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
ASCII .

line feed
carriage return
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
space
ASCIT
ASCII
space
ASCII
ASCH
ASCII
ASCII
ASCII
ASCII

nmOoU ®mOWITIQ-mZ <2

e n Im<HOomE ~Ccw

nNmLuuk" -

BUTTON-BUTTON

001,061 040
001,062 111
001,063 124
001,064 041
001,065 012
001,066 015
001,067 377
001,070 072
001,071 122
001,072 111
001,073 107
001,074 110
001,075 124
001,076 040
001,077 131
001,100 117
001,101 125
001,102 040
001,103 101
001,104 122
001,105 105
001,106 073
001,107 040
001,110 114
001,111 125
001,112 103
001,113 113
001,114 131
001,115 041
001,116 012
001,117 012
001,120 015
001,121 377
001,122 072
001,123 116
001,124 117
001,125 040
001,126 117
001,127 116

001,130 105
001,131 040

space

ASCII 1
ASCII T
ASCII !

line feed
carriage return
stop code

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCIIL
space
ASCII
ASCII
ASCIL
ASCIIT
space
ASCII
ASCII
ASCII
ASCII
ASCH
ASCII !
line feed

line feed
carriage return
stop code

mxyp CO< HIEIa=x-

~=<ROcH

ASCII :
ASCII N
ASCII O
space

ASCII O
ASCII N
ASCII E
space

65

66

001,132
001,133
001,134
001,135
001,136
001,137
001,140
001,141
001,142
001,143
001,144
001,145
001,146
001,147
001,150
001,151
001,152
001,153
001,154
001,155
001,156
001,157
001,160
001,161
001,162
001,163
001,164
001,165
001,166
001,167

001,170
001,171

001,172
001,173
001,174
001,175
001,176
001,177
001,200

8080 Machine Language Programming for Beginners

110
105
122
105
040
127
111
124
110
040
124
110
101
124
040
043
056
040
124
122
131
040
101
107
101
111
116
012
015
377

077
116

000
000
000
000
000
000
000

ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII
ASCII
ASCII
space
ASCII
ASCII .
space
ASCII T
ASCII
ASCII Y
space
ASCII A
G
A

% HpIr-Ha @In=a-= mxmom

R
ASCII G
ASCII
ASCII 1
ASCII N
line feed

carriage return
stop code

random storage
random storage

stack
stack
stack
stack
stack
stack
stack

BUTTON-BUTTON 67

Load in all those op-codes and run the program. As these pro-
grams get longer, they become tedious and tiring for you to load
into the computer, but it’s all part of programming. Have patience
and maybe rest ever so often. The most important op-codes are
those from addresses 000,000 to 000,217; those must all be loaded
perfectly. If a mistake is made in that area, when you go to run the
program it’ll more than likely disappear from memory—that’s real
frustration! If a mistake is made in the ASCII text portion of mem-
ory, it’s not as important to the operation of the program; just
make sure you get the “stop codes” in where they belong.

68

YOU’RE ON
YOUR OWN

At this point you should try writing your own program. Decide
what you want the computer to do, make a block diagram, then
write the program, and run it. Very often when you run the program
for the first time it won’t work—don’t get discouraged, it’s a fact
of life for even the most experienced programmers. Look at the
program one op-code at a time, go slowly and keep track of what
happens to each register on a piece of paper. If you can’t find your
mistake and a friend is available who’s studying with you, have
him follow it through. Something that helps me is just to put the
program away and come back toitlater. After working on the same
program for many hours, a person’s thinking gets sluggish; a fresh
approach at a later time is sometimes the best solution.

The process of fixing a program that doesn’t work is called “de-
bugging”’; many times, debugging can be more work than writing
the program.

Don’t shoot for the moon on your first program. Keep the ob-
jective simple. If you can’t think of anything on your own, here
are two ideas.

Write a program to:

1. Add the numbers from 0 to 10 and stere the result at
address 000,100.

2. Roll a pair of imaginary dice and display the result of
the roll on the terminal.

I have included versions of these two programs in Appendix I,
but before you see the way I wrote them, write one yourself and
make it work. Keep in mind that your objective here is to write a
program that works—it doesn’t necessarily have to be exactly like
mine. If it works, it’s right (at this point anyway).

9

CONDITION BITS

The condition bits are contained (as a register) in the CPU.
Three of the condition bits are the CARRY bit, the ZERO bit, and
the SIGN bit. In the following discussion, ‘“‘setting” a bit causes its
value to be a 1, while “resetting’ a bit causes its value to be a 0.

The condition bits are sometimes referred to as the “status bits,”
but I don’t like that label because of possible confusion between
the condition bits and the terminal STATUS word, which tells
terminal input/output readiness.

It’s not necessary to know this, but the Condition word has the
following format:

SIGN BIT AUXILIARY CARRY BIT CARRY BIT
ZERO BIT PARITY BIT
X X 0 X 0 X 1 X

In this book I will not cover auxiliary, carry or parity.

The ZERO bit: If the result of any operation such as addition, sub-
traction, ANDing, ORing, or XORing is 0, then the ZERO bit is set
to 1.

Example: If register C contains 00,000,001 and the DCR C (de-
crement register C) op-code is used, then register C will contain
00,000,000 and the ZERO bit will be set to 1.

72 8080 Machine Language Programming for Beginners

The CARRY bit: The computer uses eight-bit words. If any opera-
tion such as addition, subtraction, rotating right, or rotating left
causes a bit to move off the end of a word, then we say a bit was
“carried” and the CARRY bit is set to 1.

Example: If the ACCUMULATOR contains 10,000,101 and the
RRC (Rotate ACCUMULATOR right) instruction is used, then it
will contain 11,000,010 and a CARRY occurred; the CARRY bit
is set to 1 because the rightmost bit of the ACCUMULATOR was
carried over to the leftmost bit.

A good way to use the CARRY bit might be to rewrite the IN-
PUT STATUS subroutine we have been using. The purpose of the
subroutine is to see if this bit

01,100,011

is a “1” or a “0.” This was done by ANDing the STATUS word
with 00,000,001. Can you see that another way of accomplishing
it would be to “‘rotate” the STATUS word to the right one bit, and
see if a CARRY occurs? These two subroutines produce the same
resuit:

ADDRESS OP-CODE ADDRESS OP-CODE
000,000 333 IN 000,000 333 IN
000,001 000 STATUS 000,001 000 STATUS
000,002 346 ANI 000,002 017 RRC
000,003 001 000,003 332 JC
000,004 302 INZ 000,004 000
000,005 000 000,005 000
000,006 000

As long as the rightmost bit of the STATUS word is a ““1,” the
computer will be stuck in this loop; when the right bit goes to “0,”
then operation will continue on to the rest of the program. Can you
see one obvious advantage to the new subroutine? Can you apply
this same principle of “rotation” of the STATUS word to create a
new OUTPUT STATUS subroutine?

SIGNED NUMBERS

So far in this text we have been dealing with eight-bit binary
numbers. The range is 00000000 (decimal 0), to 11111111 (deci-
mal 255), and for the rest of the book we will continue in this
manner. However, there is another way to assign a decimal number
to our eight-bit binary number. The lower seven bits of the binary
number can be used to represent the magnitude of the number, and
the highest bit can represent whether the number is positive or neg-
ative.

Condition Bits 73

Therefore:
+127 decimal = 01111111
0 decimal = 00000000
—128 decimal = 10000000

The ““1” in the leftmost bit means the number is negative.

The SIGN bit: If an operation such as addition, subtraction,
ANDing, and so on results in a negative number, the SIGN bit is set
to 1. If an operation results in a number that is positive, the SIGN
bit is reset to 0.

Example: If the ACCUMULATOR contains 00,000,011 (which is
a binary 3), and the SBI 004 (subtract 00,000,100) instruction is
used, the result is 11,111,111 (which is a binary -1), so the SIGN
bit is set to 0.

10

THE OP-CODES:
DEFINED

You don’t know all the 8080 op-codes, but you know the most
useful ones and, more importantly, you know the basic structure of
the 8080 system of machine language.

Most of the op-codes are listed in this chapter, along with a short
definition of each.

1 feel that if you know, and can use, these common instructions
for the 8080 microprocessor, you will have no trouble mastering
the few that are left.

The key to learning machine language programming as a hobby-
ist is to experiment.

8080 OP-CODES

IN (Input)
333 An eight-bit byte is moved from the terminal into
terminal the ACCUMULATOR. Most terminals have two

numbers associated with them, one for STATUS
and one for DATA.

OUT (Output)

323 An eight-bit byte is moved from the ACCUMULA-
terminal TOR out to the terminal.

76 8080 Machine Language Programming for Beginners

NOP (No operation}

000 Nothing happens; the machine proceeds to the
next instruction.

JMP (Jump)

303 The machine jumps to address mmm,nnn. (From

nnn this point on I will refer to a general address as

mmm mmm,nnn. The general address mmm,nnn can
represent any octal address such as 000,100 and so
on.)

JC (Jump if CARRY)

332 This is a conditional instruction. If the CARRY bit
nnn is 1, then a carry has occurred and the machine will
mmm jump to address mmm,nnn. If the CARRY bit is 0,

then no carry has occurred and operation continues
with the next op-code.

JNC (Jump if no CARRY)

322 This is also conditional. If the CARRY bit is O,
nnn then no carry has occurred and the machine will
mmm jump to address mmm,nnn. If the CARRY bit is 1,

then operation continues with the next op-code.

JZ (Jump if ZERO)

312 Conditional. If the ZERO bit is 1, then the result
nnn of a previous test was 0 and the machine will jump
mmm to address mmm,nnn. If the ZERO bit is O, then

operation continues with the next op-code.

JNZ (Jump if not ZERO}

302 If the ZERO bit is O (the result of a previous test
nnn was not 0),then the machine will jump to address
mmm mmm,nnn. Otherwise, operation continues with

the next op-code.

The Op-Codes: Defined 77

JM (Jump if MINUS)

372 Conditional instruction. If the SIGN bit is 1 (which

nnn means a result was negative), then the machine

mmm jumps to address mmm,nnn. If the SIGN bit is O
(positive result), then we go to the next sequential
op-code.

JP (Jump if POSITIVE)}

362 Conditional. If the SIGN bit is O (positive result),
nnn then the machine jumps to address mmm,nnn. If
mmm the SIGN bit is 1 (negative result), then operation

continues with the next instruction.

CALL INSTRUCTIONS

A CALL instruction is like a JUMP except that when a CALL
op-code is used, you usually intend to return back to the main pro-
gram by use of the RETURN op-code. Before a CALL instruction
is executed, the next sequential op-code address is saved on the
STACK so that later, when the RETURN instruction is met, the
CPU will know what address to return to.

CALL

315 The machine unconditionally moves to address
nnn mmm,nnn and executes the subroutine at that ad-
mmm dress.

CZ (Call if ZERO)

314 This is a conditional op-code. If the ZERO bitis 1,
nnn a previous test resulted in 0 and the machine will
mmm move to address mmm,nnn. If the ZERO bitis 0 (a

non-zero result), then no subroutine is CALLed and
the next op-code in line is executed.

CNZ (Call if not ZERO)

304 Conditional. If the ZERO bit is O (a previous test

78 8080 Machine Language Programming for Beginners

nnn resulted in a non-zero number), then address
mmm mmm,nnn is CALLed. Otherwise, the ZERO bit is
1 and operation continues with the next instruction.

CC (Call if CARRY)

334 This is conditional. If the CARRY bit is 1, then a
nnn CARRY has occurred and address mmm,nnn is
mmm CALLed. Otherwise, the CARRY bit is 0, which

means no CARRY and operation continues with
the next sequential op-code.

CNC (Call if no CARRY)

324 Conditional. If the CARRY bitis 0, then a previous
nnn test resulted in no CARRY, so address mmm,nnn is
mmm CALLed. If the CARRY bit is 1, the machine con-

tinues on to the next op-code.

CP (Call if POSITIVE)

364 Conditional. If a previous test resulted in a positive
nnn number, the SIGN bit will be 0 and the CALL to
mmm address mmm,nnn is made. If the SIGN bit is 1, then

operation continues with the next op-code.

CM (Call if MINUS)

374 Conditional. If the status of the SIGN bitis 1 (a
nnn negative result), the machine CALLs address
mmm mmm,nnn. If the SIGN bit is 0, the result was posi-

tive and the program continues sequential operation.

RETURN INSTRUCTIONS

When a CALL instruction is executed, the address of the next
sequential op-code is automatically pushed onto the STACK. The
subroutine CALLed will usually have a RETURN instruction in it.
This instruction pops the address saved off the STACK and opera-
tion resumes at that address. RETURNSs may or may not be condi-
tional.

The Op-Codes: Defined 79

RET (Return)

311 The subroutine has been completed and the ma-
chine unconditionally returns back, to the next ad-
dress following the initial CALL op-code.

RC (Return if CARRY)

330 Conditional. If the CARRY bit is 1, a CARRY has
occurred and the machine will automatically return
to the next sequential address following the original
CALL instruction.

RNC (Return if no CARRY)

320 Also conditional. If the CARRY bit is O, then a
CARRY has not occurred and the CPU will return
back to the main program at the next address after
the initial CALL op-code.

RZ (Return if ZERO)

310 Conditional. If the ZERO bit is 1, a previous test re-
sulted in zero, and the machine returns back to the
main program at the next address after the original
CALL instruction. If the ZERO bit is O, then a re-
sult was non-zero and the subroutine continues.

RNZ (Return if not ZERO)

300 Conditional. If the ZERO bit is O (a non-zero answer
to a previous test), then we return back to the main
program at the next address after the initial CALL
op-code. Otherwise, the subroutine continues.

RP (Return if POSITIVE)

360 Conditional. If the status of the SIGN bit is O (a posi-
tive result), the machine automatically returns to the
next sequential address following the initial CALL
instruction. If the SIGN bit is 1 (a negative result),
then the subroutine continues with the next op-code.

80 8080 Machine Language Programming for Beginners

RM (Return if MINUS)

370 Conditional. If the SIGN bit is 1 (negative result),
wy ceturn back to the main program. If the SIGN bit
is O (positive result), then the subroutine continues.

More than one conditional RETURN instruction can be put in a
subroutine.

THE ACCUMULATOR INSTRUCTIONS
RLC (Rotate ACCUMULATOR left)

007 The ACCUMULATOR byte is moved one bit to the
left. The end bit wraps around. For example, if the
ACCUMULATOR is 00,101,111, then after RLC it
will be 01,011,110.

RRC (Rotate ACCUMULATOR right)

017 The ACCUMULATOR byte is moved one bit to the
right. Again, the end bit wraps around. If the ACCU-
MULATOR is 00,101,111, then after RRC it will be
10,010,111,

CMA (Complement the ACCUMULATOR)

057 Each bit in the ACCUMULATOR is complemented,
which means 1’s become 0’s and 0’s become 1’s. If
it was 00,101,111, then it will be 11,010,000.

ADI (Add immediate to the ACCUMULATOR)

306 The DATA byte ddd is added to the ACCUMULA-

ddd TOR. The sum is then put back into the ACCUMU-
LATOR. Since we are adding two numbers, the
SIGN, ZERO and CARRY bits could be affected.

SUI (Subtract immediate from the ACCUMULATOR)

326 The DATA byte ddd is subtracted from the ACCU-
ddd MULATOR. The sum is put back into the ACCU-
MULATOR. Since we are subtracting two numbers,

The Op-Codes: Defined 81

the SIGN, ZERO, and CARRY bits could be af-
fected.

ANI (AND immediate with the ACCUMULATOR)

346 The DATA byte ddd is ANDed with the ACCUMU-

ddd LATOR, and the result is put into the ACCUMU-
LATOR. The CARRY bit is reset to 0, and the
SIGN and ZERO bits could be affected, depending
on the result.
Example: If the ACCUMULATOR is 00,101,111
and ddd is 11,010,000, then the result after ANI
will be 00,000,000, which will be put into the AC-
CUMULATOR. Since the answer is zero, the ZERO
bit will be set to 1.

ORI (OR immediate with the ACCUMULATOR)

366 The DATA byte ddd is ORed with the ACCUMU-

ddd LATOR, and the result is put into the ACCUMU-
LATOR. The CARRY bitisreset to 0, and the SIGN
and ZERO bits might be affected.

XRI (Exclusive-OR immediate with the ACCUMULATOR)

356 The DATA byte ddd is Exclusive-ORed with the

ddd ACCUMULATOR and the result is put into the
ACCUMULATOR. The CARRY bit is reset to 0.
The SIGN and ZERO bits might be affected.
Example: If the ACCUMULATOR is 00,101,111
and ddd is 00,000,101, then after XRI the ACCU-
MULATOR will contain 00,101,010. The ZERO bit
will be reset to O because the result was not zero,
and the SIGN bit will be reset to O because the re-
sult was positive.

CPI (Compare immediate with the ACCUMULATOR)

376 The DATA byte ddd is compared with the ACCU-
ddd MULATOR, by subtracting the DATA byte from
the ACCUMULATOR. The resultis not put into the
ACCUMULATOR it remains unchanged. The
SIGN, ZERO and CARRY bits could be affected.

82 8080 Machine Language Programming for Beginners

STA (Store the ACCUMULATOR)

062 The contents of the ACCUMULATOR are stored
nnn at address mmm,nnn.
mmm

LDA (Load the ACCUMULATOR)

072 The DATA byte at address mmm,nnn is loaded
nnn into the ACCUMULATOR.
mmm

STC (Set CARRY)

067 The CARRY bit is set to 1. No other condition bits
are affected.

CMC (Complement CARRY)

077 The CARRY bit is complemented, which means if
it’s initially 1 it is reset to O, and if it’s initially O
it is set to 1. ZERO and SIGN bits are not affected.

In the following section I have given the op-codes for the MOVE,
INCREMENT, DECREMENT, and REGISTER instructions. Each
of these instructions has several variations, depending on which
register(s) is(are) used. For example: The INCREMENT instruction
can add 1 to register B, C, D, E, H, L, or the ACCUMULATOR,
depending on how it is written. The INCREMENT op-code is.0_4,
where the blank is filled with the number of the register to be in-
cremented. The code is:

Register B is 0
Register C is 1
Register D is 2
Register E is 3
Register H is 4
Register L is 5
Register M is 6 (where M is the DATA at H/L)

ACCUMULATOR is 7
So, if we wanted to INCREMENT register E, we would use the op-
code 034. If we wanted to INCREMENT the DATA at address
H/L, we would use the op-code 064. If we wanted to INCREMENT
the ACCUMULATOR, we would use 074.

The Op-Codes: Defined 83

This method of “fill in the register” will be used on all the
codes for INCREMENT, DECREMENT, MOVE, and REGISTER
instructions that follow.

INR (Increment register or memory)

04 The specified register (or memory address H/L) is
incremented by 1. The ZERO or SIGN bits can be
affected.

DCR (Decrement register or memory)

0_S The specified register or memory address H/L is
decremented by 1. Again the ZERO or SIGN bits

can be affected.

MVI (Move immediate DATA into register)

0_6 The DATA byte ddd is moved into the specified reg-
ddd ister (or memory address H/L). No condition bits
are affected.

MOV (Move DATA from one register to another)

0 There are two blanks in this op-code. DATA is moved
from the register in the right blank to the register in
the center blank. For example: 071 means to move
the contents of register Cinto the ACCUMULATOR.
067 means move the DATA in the ACCUMULATOR
to the address specified by H/L.

REMEMBER

Register
Register
Register
Register
Register
Register
Register
ACCUMULATO

Eromouaw
5

(address H/L)

..
3
VWO UMBWR—O

~
o

84 8080 Machine Language Programming for Beginners

REGISTER INSTRUCTIONS

ADDR (Add register to the ACCUMULATOR)

20_ The specified register is added to the ACCUMULA-
TOR. CARRY, SIGN, and ZERO bits can be
affected. Asan example: 204 means to add the con-
tents of register Hto the ACCUMULATOR and put
the sum back in the ACCUMULATOR.

SUB (Subtract register from the ACCUMULATOR)

22 The specified register is subtracted from the ACCU-
MULATOR and the result is put back in the ACCU-
MULATOR. CARRY, SIGN and ZERO bits can be
affected. Example: 226 means to subtract the
DATA byte at address H/L from the ACCUMU-
LATOR.

ANA (AND register with the ACCUMULATOR)

24 The specified registeris ANDed with the ACCUMU-
LATOR and the result is put back in the ACCUMU-
LATOR. The CARRY bit is reset to 0. The ZERO
and SIGN bits can be affected.

ORA (OR register with the ACCUMULATOR)

26_ The specified register is ORed with the ACCUMU-
LATOR and the result is put back in the ACCU-
MULATOR. The CARRY bit is reset to 0. The
ZERO and SIGN bits can be affected.

XRA (Exclusive-OR register with the ACCUMULATOR)

25_ The specified register is Exclusive-ORed with the
ACCUMULATOR and the result put in the ACCU-
MULATOR. CARRY bit is reset to 0. The ZERO
and SIGN bits can be affected.

The Op-Codes: Defined 85

CMP (Compare register to the ACCUMULATOR)

27_ The specified register is compared with the ACCU-
MULATOR, by subtracting the register from the
ACCUMULATOR. The contents of the ACCUMU-
LATOR and the contents of the register are not
changed. The CARRY, ZERO, and SIGN bits can
be affected.

The CMP instruction is useful in determining if a
particular register is the same as the ACCUMULA-
TOR. If the two bytes are equal, the ZERO bit will
be set to 1. If the specified register is larger than the
ACCUMULATOR, the CARRY bit will be set to 1.
If the specified register is smaller than the ACCU-
MULATOR, the CARRY bit will be reset to 0. Do
you see why?

PUSH, POP, and LOAD

These three op-codes have several variations, depending on which
register pairs are used. The codes for the register pairs are:
Register pair B,C is 0
Register pair D.E is 2
Register pair H/L is 4
STACK pointer is 6 (top of STACK)
ACCUMULATOR and condition bits are also 6

LX! {Load register pair immediate)

0_1 Two bytes of immediate DATA are loaded into the
nnn specified register pair. The DATA nnn is loaded into
mmm the second register of the pair, and mmm is loaded

into the first register of the pair. DATA mmm and
nnn does not need to represent an address—although
many times it does.

For example: If the op-code 041 is used, then DATA
nnn will be put in register L and DATA mmm will
be put into register H. The condition bits (CARRY,
and so on) are not affected.

86 8080 Machine Language Programming for Beginners

Example: If the op-code 061 is used, then the top
of the STACK (the STACK pointer) will be address
mmm,nnn.

The LXI instruction is very useful for loading DATA
or addresses into register pairs.

Remember that the STACK is a portion of memory where DATA
or addresses are temporarily stored. The PUSH instruction moves
the DATA contained in a register pair onto the STACK. Two bytes
of DATA are moved onto the STACK at a time. The POP instruc-
tion moves the top two DATA bytes off the STACK and into a
specified register pair. Two bytes of DATA are moved off the
STACK at a time.

PUSH(Push DATA onto the STACK)

3.5 The contents of the specified register pair are stored
in two bytes of memory, at an address specified by
the STACK pointer. The contents of the first regis-
ter are PUSHed into an address one less than the
STACK pointer, the contents of the second register
are PUSHed into an address two less than the
STACK pointer.

Example: If the op-code 305 is used, register B will
be PUSHed into an address one less than the STACK
pointer, and register C will be PUSHed into an ad-
dress two less than the STACK pointer. Condition
bits (CARRY, and so on) are not affected.

POP (Pop DATA off the STACK)

31 The top two bytes of DATA on the STACK (de-
fined by STACK pointer plus one, and STACK
pointer plus two) are moved into the two registers
specified.

Example: If the op-code 301 is used, the DATA at
the STACK pointer address plus one is moved into
register B, and the DATA at the STACK pointer
address plus two is moved into register C. The con-
dition bits are not affected unless op-code 361 is
used.

The Op-Codes: Defined 87

INCREMENT/DECREMENT REGISTER PAIRS

As you’ve no doubt noticed, registers are often paired in 8080
programming. Thus a register pair can be used to represent a single
sixteen-bit number. The INX (Increment) and DCX (Decrement)
instructions consider the register pairs B,C; D,E; and H/L as single
sixteen-bit binary numbers. Therefore, if register B contains
00,000,000 and C contains 11,111,111, then after the INX B,C
op-code, register B will contain 00,000,001 and register C will con-
tain 00,000,000. In other words, 00,000,000 11,111,111 was in-
cremented to 00,000,001 00,000,000. Condition bits are not af-
fected. The op-codes are:

003 Increment register pair B,C.
023 Increment register pair D,E.
043 Increment register pair H/L.
063 Increment the STACK pointer (which is a

sixteen-bit number)

013 Decrement register pair B,C.
033 Decrement register pair D,E.
053 Decrement register pair H/L.
073 Decrement the STACK pointer.

THE H/L OP-CODES
XCHG (Exchange registers)

353 The sixteen-bit number formed by the H and L reg-
isters is exchanged with the sixteen-bit number
formed by the D and E registers. H and D are ex-
changed, and Land E are exchanged. Condition bits
are not affected.

XTHL (Exchange STACK)

343 The DATA byte in register L is exchanged with the
DATA byte at the STACK pointer address, and the

88 8080 Machine Language Programming for Beginners

byte in register H is exchanged with the byte at the
STACK pointer address plus one. Condition bits
are not affected.

SPHL (Load STACK pointer from H/L)

371 The sixteen-bit contents of the registers H/L replace
the contents of the STACK pointer—this moves the
STACK. The H and L registers are not changed.
Condition bits are not affected.

PCHL (Load program counter from H/L)

351 This is in effect a jump instruction. The machine
will jump to the address specified by the H and L
registers and continue executing the program from
there. H and L do not change. The condition bits
are unaffected.

SHLD (Store H and L direct)

042 The DATA byte in register L is stored at address
nnn mmm,nnn; and the DATA byte in register H is
mmm stored at address mmm,nnn plus one. The condi-

tion bits are not affected.

LHLD (Load H and L direct)

052 Register L is loaded with the DATA byte at address
nnn mmm,nnn; and register H is loaded with the data
mmm byte at address mmm,nnn plus one. Condition bits

are not affected.

APPENDIX 1

THE SUM OF NUMBERS 0 TO 10

This is a program to add the numbers from O to 10 and store at
000,100.

ADDRESS OP-CODE EXPLANATION
000,000 006 MVI B Move into register B
000,001 012 the binary number 10.

000,002 076 MVI A Move into the ACCUMULATOR
000,003 000 the binary number 0.

000,004 200 ADDR B Add register B to the ACCUMU-
LATOR (the result goes into the

ACCUMULATOR).
000,005 005 DCR B Decrement register B.
000,006 302 JNZ Jump if not zero
000,007 004 back to address 000,004.
000,010 000
000,011 062 STA Store ACCUMULATOR (sum
000,012 100 of 0 through 10) at address
000,013 000 000,100.
000,014 303 IMP Loop here when done.
000,015 014
000,016 000

This program puts a binary 10 in register B and a 0 in the ACCU-
MULATOR, then adds them and the result goes back in the AC-
CUMULATOR. The ACCUMULATOR contains 0 + 10 = 10. Then
register B is decremented to 9 and added to ACCUMULATOR. The
ACCUMULATOR contains 10 + 9 = 19. Then register B is decre-
mented to 8 and added to the ACCUMULATOR, and so on. After
register B becomes 0, the ACCUMULATOR is stored at 000,100.
It will be the binary number 00,110,111 (55).

90 8080 Machine Language Programming for Beginners
THE ROLL OF TWO DICE

In this program two dice are rolled and the results are displayed on |
a terminal when a carriage return is typed.

ADDRESS OP-CODE EXPLANATION
000,000 061 LXI SP]

000,001 130 Initialize the STACK.
000,002 000

000,003 333 IN
000,004 000 STATUS
000,005 346 ANI

000,006 001 Input a DATA byte from ter-
000,007 302 JNZ minal. If it’s a carriage return,
000,010 003 go on to address 000,021; if

000,011 000 not, go back and input again.

000,012 333 IN

000,013 001 DATA
000,014 376 CPI

000,015 015 carriage return
000,016 302 INZ

000,017 003

000,020 000

000,021 076 MVI A
000,022 012 line feed

000,023 315 CALL Print a line feed.
000,024 104
000,025 000

000,026 076 MVI A
000,027 015 carriage return

000,030 315 CALL Print a carriage return. |
000,031 104 |
000,032 000 B ‘
000,033 315 CALL 1]

000,034 057

000,035 000 Get a random number from O

000,036 315 CALL to 6 and print it on the termi-

000,037 104 nal.

000,040 000 J

Appendix

000,041
000,042
000,043
000,044
000,045

000,046
000,047
000,050
000,051
000,052
000,053

000,054
000,055
000,056

000,057
000,060
000,061
000,062
000,063
000,064
000,065
000,066
000,067
000,070
000,071

000,072
000,073
000,074
000,075
000,076
000,077
000,100

000,101
000,102
000,103

000,104
000,105
000,106
000,107

076
054
315
104
000

315
057
000
315
104
000

303
000
000

041
120
000
176
017
206
017
167
043
256
167

346
007
376
007
362
057
000

366
060
311

365
333
000
346

MVI A
comma
CALL

CALL

CALL

JMP

LXI H/L

MOV AM
RRC
ADDR M
RRC
MOV M,A
INX H/L
XRA M
MOV M,A

ANI
CPI
JP

ORI
RET

PUSH A
IN

ANI

91

Print a comma.

Get a random number from 0
to 6 and print it on the termi-
nal.

Jump back to the beginning.

Get a random number.

Make sure its between 0 and 6.

Convert the binary number to
ASCII. Return.

92

000,110
000,111
000,112
000,113
000,114
000,115
000,116
000,117

000,120
000,121

8080 Machine Language Programming for Beginners

200
302
105
000
361
323
001
311

253
144

JNZ Output the ACCUMULATOR
to the terminal.

POP A

ouT

DATA

RET

These two addresses are storage
for the random number gener-

ator.

93

APPENDIX 11

A BETTER RANDOM NUMBER GENERATOR

The random number generator we’ve been using is okay for simple
programs, but here’s a much better generator:

ADDRESS OP-CODE
000,000 041 LXI H/L
000,001 050

000,002 000

000,003 006 MVI B
000,004 010 binary 8
000,005 176 MOV AM
000,006 007 RLC
000,007 007 RLC
000,010 007 RLC
000,011 256 XRA M
000,012 027 RAL
000,013 027 RAL
000,014 055 DCR L
000,015 055 DCR L
000,016 055 DCR L
000,017 176 MOV AM
000,020 027 RAL
000,021 167 MOV M,A
000,022 054 INR L
000,023 176 MOV AM
000,024 027 RAL
000,025 167 MOV M,A
000,026 054 INR L
000,027 176 MOV AM
000,030 027 RAL
000,031 167 MOV M,A
000,032 054 INR L
000,033 176 MOV AM
000,034 027 RAL
000,035 167 MOV M,A
000,036 005 DCR B
000,037 302 IJNZ
000,040 006

000,041 000

000,042 XXX

000,043 XXX

000,044 XXX

EXPLANATION

This generator uses four addresses
for temporary storage; they are
000,045; 000,046; 000,047; and
000,050.

Jump back to program or return.

94

APPENDIX III

8080 REFERENCE TABLE
returns in stack H/L pairs
RET 311|IN 333{PUSH BC 305| XCHG 353 | STAX BC 002
RNZ 300(ddd PUSH DE 325| XTHL 343 |STAX DE 022
RZ 310 PUSH HL 345| SPHL 371 |LDAX BC 012
RNC 320 oot PUSHA 365{ PCHL 351 | LDAX DE 032
RC 330 o POPBC 301 LXIBC 001
RP 360 ouT 323|POPDE 321] shifts nan
RM 370{ ddd POPHL 341} ——
pPOPA 361|RLC 007 [mmm
jumps calls " RRC 017 :;z:,DE oz
JMP 303(CALL 315 = accumulator | mmm
nnn nnn ADDRr 20— | - |LXIHL 04t
mmm mmm ADCr 21— |AD! 306 | 1hn
JINZ 302(cNz 304[SUBr 22 |ddd mmm
nnn nnn ANAr 24_|SUl 326 | x1sp 061
mmm mmm XRAr 25_|ddd nnn
3z 312{cz 314[ORAT 26_|ANl 346 |,
nnn nnn CMPr 27_|ddd 356 - -
INGT ggp| Mmm increment g::, Ancr pair
CNC 324 T
nnn oon INRr oa|ORl 366 [INX BC 003
mmm A ddd INX DE 023
ic 332{ o0 o —cPI 376 | INX HL 043
nnn decrement | ggg INX SP 063
nnn
VA 364 O I Gt decr pair
nnn ann MO ISHLD o042 |DCX BC 013
mmm mmm MOVrr 1_|[nnn DCX DE 033
UM 372 cm 374 [MVir 0_6|mmm DCX HL 053
nnn ann ddd LHLD o052 |DCX SP 073
mmm mmm nnn
no-op mmm
godes NOP ooo|STA 082
B = 0 nnn
cC= 1 mmm
D= 2 LDA 072
E= 3 | nnn
H = 4 N mmm
L=5 B
M= 6
A= 7

ASCII CODES

BINARY

00000000
00000111
00001010
00001101
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000

CHARACTER

NUL

BEL

line feed
carriage return
space

!

13

+ *~" *eReH®

VIR N B W — O™

®>V 1A

95

96 - 8080 Machine Language Programming for Beginners

01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
0100100t
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111

S NUXE<QHRIOTOZEr R U " IOTMmUOW >

There are more ASCII codes, but these are the most common.

97

ANSWERS
TO QUESTIONS

In this section I have tried to answer all questions asked in the
book, in case you could not find the answer by reading. They are
listed by page number.

page 2
1. decimal binary

1 001
000
010
110
101
011
111
100

AW ANO

2. The binary system contains only two integers: O and 1. With
those two symbols any real number can be made.

3. decimal 8 = binary 1000
decimal 1 = binary 0001
decimal 9 = binary 1001

4. 000 000 100 001 101 001
+001 +010 +001 +101 +010 +111
001 010 101 110 111 1000

binary 001 = decimal 1
binary 010 = decimal 2
binary 101 = decimal §
binary 110 = decimal 6
binary 111 = decimal 7
binary 1000 = decimal 8

page 3
for the 8080 microprocessor:

1. eight bits = one byte

98 8080 Machine Language Programming for Beginners

2. sixteen bits = an address

3. binary octal

00 000 100 = 004

00 000 Ot1 = 003

00 001 000 = 010

01 000 101 = 105

10 001 001 = 211

01 111 000 = 170

00 000 001 = 001

11 000 011 = 303

11 111 010 = 372

10 001 001 = 211

00 110 101 = 065

11 001 001 = 311

page 10

11101111 00010001 11110000
AND 10010001 AND 00010000 AND ‘00111111
10000001 00010000 00110000
00011111 11111111 00000000
OR 11001010 OR 10000010 OR 00011000
11011111 11111111 00011000

1. A byte contains eight bits.

2. An address contains sixteen bits.
3. Binary 01 000 011 = octal 103.
4. Octal 303 = binary 11 000 O11.

5. All eight working registers are contained in the 8080 central
processor.

6. The STATUS word tells whether or not the terminal is ready
to send or receive DATA.

7. The first and last bits of the STATUS word are important for
the computer system used in this book. Which two bits are
used for testing STATUS in your system?

Answers to Questions 99

8. The rightmost bit of the STATUS word tells if the terminal is
ready to send DATA to the computer. The leftmost bit of the
STATUS word tells if the terminal is ready to receive DATA
from the computer. Are these the same two bits used for your
system?

9. For my system, the octal numbers 000 and 001 are used to get
the terminal STATUS and for terminal DATA.

10. Computers, in general, perform their work extremely fast, and
they are constantly waiting on the terminal. This is the reason
for checking terminal STATUS before inputting DATA from it
or outputting DATA to it.

. The ASCII code for the letter “A” is 01 000 001 in binary, or
101 in octal.

12. As you progress through the alphabet from A to Z, the ASCII
equivalents get larger:

A = 101
M = 115
Z = 132

So if you wrote a program to put the ASCII codes in numerical
order, then you would be putting the words in alphabetical or-

der, too.
Notice also that the ASCII codes of our decimal digits 0

through 9 are in numeric order:

0 = 060
5 = 065
9 = 071
page 16
Change the op-code at 000,010 to 102 (an ASCII “B”).
page 31
This program will generate an ASCII number from 060 to 063:
ADDRESS OP-CODE
000,000 041 LXI H/L
000,001 024
000,002 000

000,003 176 MOV AM

100 8080 Machine Language Programming for Beginners

000,004 017 RRC
000,005 206 ADD M
000,006 017 RRC
000,007 167 MOV M,A
000,010 043 INX H/L
000,011 256 XRA M
000,012 167 MOV M,A
000,013 346 ANI
000,014 003

000,015 366 ORI
000,016 060

000,017 323 OUT
000,020 001

000,021 303 JMP
000,022 021

000,023 000

Note that the only real difference in this program is at address
000,014, where the ACCUMULATOR is ANDed with 00 000 0O11.
This will always result in a number from 00 000 000 to 00 000 011.
At address 000,015 the ACCUMULATOR is ORed with 00 110 000,
which changes it to an ASCII code.

This program will generate a binary number from 00 000 000 to
00000011. .

ADDRESS OP-CODE
000,000 041 LXI H/L
000,001 020
000,002 000
000,003 176 MOV AM
000,004 017 RRC
000,005 206 ADD M
000,006 017 RRC
000,007 167 MOV MA
000,010 043 INX H/L
000,011 256 XRA M

000,012 167 MOV MA

Answers to Questions 101

000,013 346 ANI
000,014 003
000,015 303 IMP
000,016 015
000,017 000

Of course, this program will not print the binary numbers on the
terminal because onty ASCII DATA can be sent out—binary DATA
will not print on the terminal. When address 000,015 is reached, the
ACCUMULATOR will contain a binary number from 00 000 000

to 00 000 011.

This program will continue to print out random numbers until you

stop it:

ADDRESS OP-CODE
000,000 333 IN
000,001 000 STATUS
000,002 346 ANI
000,003 200
000,004 302 JINZ
000,005 000
000,006 000
000,007 041 LXI H/L
000,010 033
000,011 000
000,012 176 MOV AM
000,013 017 RRC
000,014 206 ADD M
000,015 017 RRC
000,016 167 MOV MA
000,017 043 INX H/L
000,020 256 XRA M
000,021 167 MOV MA
000,022 346 ANI
000,023 007
000,024 366 ORI

000,025 060

102 8080 Machine Language Programming for Beginners

000,026 323 OUT
000,027 001
000,030 303 JMP
000,031 000
000,032 000

Notice an output STATUS check was added.

page 72

An advantage to testing for CARRY is that one less memory loca-
tion is used. The CARRY method uses only six address locations—
the ANDing method uses seven. Memory space should always be
conserved if possible.

Here is a STATUS subroutine using the “rotate and check CARRY”
method to determine terminal output STATUS:

ADDRESS OP-CODE
000,000 333 IN
000,001 000 STATUS
000,002 007 RLC
000,003 332 IC
000,004 000
000,005 000

Notice that on this one, the ACCUMULATOR gets rotated left.
On the output STATUS subroutine, we want to check the leftmost
bit of the STATUS word.

INDEX

Accumulator, 6
Accumulator data, 24
Accumulator instructions,

Address, 3

AND, 4

AND/OR logic, 4
ASCII code, 9, 10,95

Binary, 1

Bit, 2

Brains, 6
BUTTON-BUTTON, 55-67
Byte, 3

CALL, 34,77-78
Carriage return, 17, 41
Carry, 2

Carry bit, 72
Central processor, 6
Compare, 85
Computer, 6
Condition bits, 71
Condition word, 6
CPU, 6

DATA 8,13,17
Debugging, 69
Decimal, 1
Decrement, 83
Dice, 90

Echo program, 25
Exclusive OR, 5

Hello, 26
HI-LOW, 33-41
H/L op-codes, 87

Increment, 83

Input, 75

Input STATUS, 23
INPUT subroutine, 23-24
Instruction, 11
Interfacing, 7

Jump, 76-77

Keyboard, 6

Line feed, 17,41

Machine language
programming, 7

Main program, 34

Memory, 6

Mistakes, 67

Move, 83

MPU, 6

NIM, 43-53
No operation, 57,76
NOP, 57,76

Octal code, 3

OP-code, 11

Op-codes defined, 75-88

Op-code reference table, 94

OR, 4

Output, 75

Output STATUS, 12

Qutput subroutine, 12-14
17-22

Pop, 36,85

Printout device, 6

Programming, 15,16

Push 36,85

104 8080 Machine Language Programming for Beginners

Random number generator,
27-31,93

Read, 6

Register, 6

Register instructions, 84-85

Register pair, 19, 87-88

RETURN, 34,78-80

Rightmost bit, 24

Rotate, 72

Serial interface, 7

Sign bit, 73

Signed numbers, 72
Stack, 34

Stack operations, 34-36, 86
Stack pointer, 34-36
Status, 7,8,24

Status bit, 72

Status byte, 7
STATUS word, 7,8,24
Stop code, 19
Subroutine, 34

Terminal, 6

Word, 3
Writing, &7

XOR, 5

Zero bit, 71

