
Background

MySQL supports using SSL to secure connections,
including replication. (It can also be used for regular
application connections, e.g. from PHP.)

Using SSL with MySQL can provide three benefits:

It can encrypt the data in transit, protecting us from
snooping on the wire.

1.

It can authenticate the server, so the client knows it
is receiving authentic data.

2.

It can authenticate the client, augmenting the
password with public key cryptography.

3.

Replication is excellent for getting a real-time snapshot of
your data far away from the original database—the
further the replica, the less likely it can be affected by the
same outage. But for many organizations, traffic between
datacenters (or between one cloud provider's Regions)
crosses the public Internet. If there's anything in your
database you wouldn't want on the cover of the New York
Times, you should encrypt your replication traffic.

In this procedure, we'll configure SSL-protected
replication between a master server in Boston and a
business-continuity replica in London.

There is no
substitute for
experience.

You replicate data because
it's important. Treat your
important data right, and
get concrete experience
with replication in our
hands-on course.

What's in the course?

Documentation
Documentation Home

Log in

Encrypt Replication Traffic

Steps

Check MySQL for SSL Support

SSH to boston.example.com and check if MySQL is installed (or compiled) with SSL
support.

boston ~ $ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.30 MySQL Community Server (GPL)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

1.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

1 of 14 10-06-14 14:33

affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+----------+
| Variable_name | Value |
+---------------+----------+
| have_ssl | DISABLED |
+---------------+----------+
1 row in set (0.00 sec)

mysql>

We expect a value of DISABLED. This means it is supported, but not configured, which
we fix in Step 4.

A value of YES means it is supported and already configured.

A value of NO means it is not supported, and you'll need to reinstall or recompile
MySQL, following these instructions.

After this step is completed:

On Boston, the MySQL variable have_ssl has value DISABLED or YES1.
On London, the MySQL variable have_ssl has value DISABLED or YES2.

Configure a Replication Account

Add a service account on Boston and give it replication privileges. The London
server will use this account to authenticate to Boston.

mysql> GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'replicator'@'%'
IDENTIFIED BY 'ToolGrubArmyBug';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT SELECT ON important.stuff TO 'replicator'@'%';
Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

mysql>

This grants SELECT rights to the important.stuff table, which aren't necessary for
replication, but are necessary for the tests in Step 3 and Step 8.

After this step is completed:

replicator can log into MySQL on Boston from London with password
ToolGrubArmyBug

1.

2.

Show Unencrypted Traffic

In this step, we'll capture traffic to show that without SSL, database traffic can be
intercepted and read over the network. In a hurry? Skip to the next step.

With these settings, the replication account can connect from London to Boston,
and MySQL traffic will not be encrypted.

SSH to london.example.com

3.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

2 of 14 10-06-14 14:33

Start a tcpdump session on London, capturing MySQL traffic to and from Boston

london ~ $ sudo tcpdump -ns 0 host boston.example.com and port 3306 -w /tmp/repl.pcap &
[1] 18796
london ~ $ tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

The output from tcpdump starting up obscured your prompt, press enter a few
times, then connect to MySQL on Boston using the replicator account.

london ~ $
london ~ $
london ~ $ mysql -u replicator -p'ToolGrubArmyBug' -hboston.example.com

View the content of the important.stuff database. In the lab it's filled with random
phrases, but in production it could be credit cards, private diary entries, etc.

Make a note of the details of some row.

mysql> select * from important.stuff;
+-----+---------------------+---------------------+
| id | details | happened |
+-----+---------------------+---------------------+
1	tack seam turn eat	2012-04-16 17:43:02
2	size thin win spin	2012-04-17 13:30:47
3	your lost king beef	2012-04-18 15:25:15
4	soar tell monk sold	2012-04-20 01:47:14
5	sign fall eye roar	2012-04-21 00:53:43
......some content not shown		
296	milk mule newt man	2013-04-15 05:30:20
+-----+---------------------+---------------------+
296 rows in set (0.01 sec)

mysql> exit
Bye

We used & to start tcpdump as a background job. Look it up the job number.

london ~ $ jobs
[1]+ Running sudo tcpdump host boston.example.com and port 3306 > /tmp/repl.pcap &

It's listed as job 1, bring that job from the background to the foreground with fg

london ~ $ fg 1
sudo tcpdump host boston.example.com and port 3306 > /tmp/repl.pcap

Stop tcpdump by pressing control + c

^C36 packets captured
40 packets received by filter
0 packets dropped by kernel
london ~ $

Now search the tcpdump output for the detail text you noted above. If that text is in
the dump file, it was transmitted over the network unencrypted.

london ~ $ grep --text "milk mule newt man" /tmp/repl.pcap
x crew2013-03-18 02:44:02+277flap hugs many ink2013-03-19 11:38:54,278slug bold spin
rail2013-03-21 02:53:51*279deer your mat pig2013-03-22 11:04:34,280cozy they crop
drip2013-03-23 18:05:28,281skin span poor debt2013-03-25 09:00:25,282jazz fair pill
aqua2013-03-26 21:21:06, 283foam boot they deck2013-03-27 18:11:31,!284wolf memo turf
fool2013-03-29 15:59:56,"285knew they thin brow2013-03-30 18:45:58,#286zest dune dent
deep2013-03-31 17:09:19,$287real rent cart rake2013-04-02 06:32:01+%288rice prop glow
hum2013-04-04 00:37:05*&289bun cart cast did2013-04-05 00:05:20,'290poor twin dome
edge2013-04-06 23:23:34,(291gale cash fake were2013-04-07 12:49:16+)292beg dose peel
fame2013-04-08 13:47:31,*293they chop unit heap2013-04-10 06:23:35,+294yoke rant torn

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

3 of 14 10-06-14 14:33

womb2013-04-12 05:26:06+,295play grow day tuck2013-04-13 22:17:46+-296milk mule newt
man2013-04-15 05:30:20.
london ~ $

Note that the tcpdump output file is in a binary format, so some characters will
display as garbage or mojibake. This file format is designed to be re-used by the
tcpdump interpreter (the -r flag) or with the Wireshark GUI.

Create SSL Keys for Boston

On the Boston server, create a directory to store the Certificates

mysql> exit
Bye
boston ~ $ sudo mkdir /etc/ssl/certs/mysql
boston ~ $ sudo chown anonymous /etc/ssl/certs/mysql
boston ~ $ cd /etc/ssl/certs/mysql

Create an SSL Key Pair for Boston.

boston-private.pem is the private key Boston will use to decrypt traffic. This must
remain a secret to Boston alone.

boston-public.pem is the public key Boston will give to clients (like London). Clients
will use this key to authenticate Boston's identity, and to encrypt traffic.

boston /etc/ssl/certs/mysql $ openssl req -x509 -newkey rsa:1024 \
-keyout boston-private.pem -out boston-public.pem \
-subj '/CN=boston.example.com' -nodes -days 3650
Generating a 1024 bit RSA private key
.............++++++
...............................++++++
writing new private key to 'boston-private.pem'

If two parties do not trust each other directly (e.g., your browser and your bank's
web site), they both turn to a mutually trusted Certificate Authority. The CA
validates that the server is who they claim to be by signing their certificate.

In MySQL replication, the administrator controls both endpoints. Instead of
trusting a CA, London will trust Boston's public key explicitly.

Create a new CA certificate file that contains a copy of Boston's certificate.

boston /etc/ssl/certs/mysql $ cp boston-public.pem ca-cert.pem
boston /etc/ssl/certs/mysql $

After this step is completed:

On Boston, a private key exists at /etc/ssl/certs/mysql/boston-private.pem1.
On Boston, a public key exists at /etc/ssl/certs/mysql/boston-public.pem2.
On Boston, a CA certificate exists at /etc/ssl/certs/mysql/ca-cert.pem3.

4.

Configure Boston MySQL

Configure Boston, both to be a replication master (see Establish Replication for
details) and to support the new SSL certificates.

ssl-ca - Boston will only accept certificates signed by (or in our case, contained in)
this Certificate Authority (CA) certificate.

ssl-cert - This is the public key the Boston server will use to represent itself to

5.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

4 of 14 10-06-14 14:33

London. London will use this to authenticate Boston and to encrypt traffic.

ssl-key - This is the private key Boston will use to decrypt information from
London.

Edit my.cnf

boston ~ $ sudoedit /etc/my.cnf

Add these 5 lines

/etc/my.cnf

[mysqld]
log_bin = mysql-bin
server_id = 10
ssl-ca=/etc/ssl/certs/mysql/ca-cert.pem
ssl-cert=/etc/ssl/certs/mysql/boston-public.pem
ssl-key=/etc/ssl/certs/mysql/boston-private.pem
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
......some content not shown

The restart the MySQL process

boston ~ $ sudo service mysqld restart
Stopping mysqld: [OK]
Starting mysqld: [OK]

After this step is completed:

On Boston, /etc/my.cnf sets server_id to 101.
On Boston, /etc/my.cnf sets log_bin to mysql-bin2.
On Boston, /etc/my.cnf sets ssl-ca to /etc/ssl/certs/mysql/boston-public.pem3.
On Boston, /etc/my.cnf sets ssl-cert to /etc/ssl/certs/mysql/boston-public.pem4.
On Boston, /etc/my.cnf sets ssl-key to /etc/ssl/certs/mysql/boston-private.pem5.
On Boston, the MySQL variable server_id has value 106.
On Boston, the MySQL variable log_bin has value ON7.
On Boston, the MySQL variable ssl-ca has value /etc/ssl/certs/mysql/boston-
public.pem

8.

On Boston, the MySQL variable ssl-cert has value /etc/ssl/certs/mysql/boston-
public.pem

9.

On Boston, the MySQL variable ssl-key has value /etc/ssl/certs/mysql/boston-
private.pem

10.

Change Replicator user to Require SSL Encryption

Still on Boston, edit the replicator account to REQUIRE SSL

boston ~ $ mysql -u root
mysql> GRANT USAGE ON *.* TO 'replicator'@'%' REQUIRE SSL;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW GRANTS FOR "replicator";
+--
| Grants for replicator@%
+--
| GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'replicator'@'%' IDENTIFIED BY PASSWORD '*29ED326A0706515
| GRANT SELECT ON `important`.`stuff` TO 'replicator'@'%'
+--
2 rows in set (0.00 sec)

mysql>

6.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

5 of 14 10-06-14 14:33

Now, on the London server, try to connect to Boston. Connections that do not
request SSL will fail:

london ~ $ mysql -u replicator -p'ToolGrubArmyBug' -hboston.example.com
ERROR 1045 (28000): Access denied for user 'replicator'@'domU-12-31-39-10-54-BD.compute-1.internal' (using passwo

After this step is completed:

On Boston, the replicator user's GRANT contains REQUIRE SSL1.
replicator can not log into MySQL on Boston from London with password
ToolGrubArmyBug without SSL

2.

Add CA Certificate to London

London needs a Certificate Authority (CA) to use SSL to connect to Boston.

Create a Place to store the Certificate:

london ~ $ sudo mkdir /etc/ssl/certs/mysql
london ~ $ sudo chown anonymous /etc/ssl/certs/mysql
london ~ $ cd /etc/ssl/certs/mysql

And copy the CA certificate from Boston:

london /etc/ssl/certs/mysql $ scp boston.example.com:/etc/ssl/certs/mysql/ca-cert.pem .
The authenticity of host 'boston.example.com (10.201.219.242)' can't be established.
RSA key fingerprint is db:42:29:45:dd:b3:ef:ff:1b:af:e8:10:b7:d5:29:ed.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'boston.example.com,10.201.219.242' (RSA) to the list of known hosts.
anonymous@boston.example.com's password: (input your password)
ca-cert.pem 100% 1718 1.7KB/s 00:00
london /etc/ssl/certs/mysql $

Now connect from London to Boston, using this CA certificate to authenticate
Boston's identity:

london ~ $ mysql -u replicator -p'ToolGrubArmyBug' -hboston.example.com \
 --ssl-ca /etc/ssl/certs/mysql/ca-cert.pem --ssl-verify-server

Once you connect, check the Ssl_cipher status variable. The connection is encrypted,
Ssl_cipher will show what cypher is in use. (Default would be blank.)

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

After this step is completed:

On London, a CA certificate exists at /etc/ssl/certs/mysql/ca-cert.pem1.
replicator can log into MySQL with SSL from London to Boston with password
ToolGrubArmyBug

2.

The connection from London to Boston is encrypted, state variable Ssl_cipher
is not blank.

3.

7.

Show Encrypted Traffic

In this step, we'll capture traffic again to show that database traffic is encrypted. In
a hurry? Skip to the next step.

First, set up another tcpdump

8.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

6 of 14 10-06-14 14:33

mysql> exit
Bye
london ~ $ sudo tcpdump -ns 0 host boston.example.com and port 3306 -w /tmp/repl.pcap &
[1] 18796
london ~ $ tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

Press enter a few times, then connect to MySQL on Boston using the replicator
account and the new CA certificate.

london ~ $
london ~ $
london ~ $ mysql -u replicator -p'ToolGrubArmyBug' -hboston.example.com \
 --ssl-ca /etc/ssl/certs/mysql/ca-cert.pem --ssl-verify-server

Again, view the content in the important.stuff database, and again, make a note of
the details of some row.

mysql> select * from important.stuff;
+-----+---------------------+---------------------+
| id | details | happened |
+-----+---------------------+---------------------+
1	tack seam turn eat	2012-04-16 17:43:02
2	size thin win spin	2012-04-17 13:30:47
3	your lost king beef	2012-04-18 15:25:15
4	soar tell monk sold	2012-04-20 01:47:14
5	sign fall eye roar	2012-04-21 00:53:43
......some content not shown		
296	milk mule newt man	2013-04-15 05:30:20
+-----+---------------------+---------------------+
296 rows in set (0.01 sec)

mysql> exit
Bye

Look up the job number tcpdump started with.

london ~ $ jobs
[1]+ Running sudo tcpdump host boston.example.com and port 3306 > /tmp/repl.pcap &

Bring that job to the foreground, and press control + c to end it.

london ~ $ fg 1
sudo tcpdump host boston.example.com and port 3306 > /tmp/repl.pcap
^C36 packets captured
40 packets received by filter
0 packets dropped by kernel
london ~ $

This time when you search the tcpdump output for the detail text you noted above,
you won't find it. The connection is now encrypted.

london ~ $ grep --text "milk mule newt man" /tmp/repl.pcap
london ~ $

Change Replicator user to Verify London's Public Key

On Boston, edit the replicator account's SSL REQUIRE statement to look for a
specific certificate Subject.

mysql> GRANT USAGE ON *.* TO 'replicator'@'%'
REQUIRE SUBJECT '/CN=london.example.com';
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW GRANTS FOR "replicator";
+--
| Grants for replicator@%

9.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

7 of 14 10-06-14 14:33

+--
| GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'replicator'@'%' IDENTIFIED BY PASSWORD '*29ED326A0706515
| GRANT SELECT ON `important`.`stuff` TO 'replicator'@'%'
+--
2 rows in set (0.00 sec)

mysql>

Now, connections from London to Boston will fail, because London does not have
a certificate with that Subject:

london ~ $ mysql -u replicator -p'ToolGrubArmyBug' -hboston.example.com \
 --ssl-ca /etc/ssl/certs/mysql/ca-cert.pem --ssl-verify-server
ERROR 1045 (28000): Access denied for user 'replicator'@'domU-12-31-39-06-26-67.compute-1.internal' (using passwo

Note that the connection fails before Boston evaluates whether London provided
the correct password.

After this step is completed:

On Boston, the replicator user's GRANT contains REQUIRE SUBJECT
'/CN=london.example.com'

1.

replicator can not log into MySQL on Boston from London with password
ToolGrubArmyBug without a trusted key.

2.

Create SSL Keys for London

Create a Key and Self-Signed Certificate for London. Note that the subject (-subj) is
what Boston is already expecting.

london-private.pem is the private key London will use to decrypt traffic, and must
remain a secret to London alone.

london-public.pem is the public key Boston will use to authenticate London's identity,
and to encrypt traffic.

london /etc/ssl/certs/mysql $ openssl req -x509 -newkey rsa:1024 \
-keyout london-private.pem -out london-public.pem \
-subj '/CN=london.example.com' -nodes -days 3650
Generating a 1024 bit RSA private key
.............++++++
...............................++++++
writing new private key to 'london-private.pem'

Append the new London certificate into the CA certificate.

london /etc/ssl/certs/mysql $ cat london-public.pem >> ca-cert.pem

And copy the amended CA certificate back to Boston:

london /etc/ssl/certs/mysql $ scp ca-cert.pem boston.example.com:/etc/ssl/certs/mysql/
anonymous@boston.example.com's password: (input your password)
ca-cert.pem 100% 1718 1.7KB/s 00:00
london /etc/ssl/certs/mysql $

Boston needs a MySQL restart to load the changes to ca-cert

boston ~ $ sudo service mysqld restart
Stopping mysqld: [OK]
Starting mysqld: [OK]

After this step is completed:

10.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

8 of 14 10-06-14 14:33

On London, a private key exists at /etc/ssl/certs/mysql/boston-private.pem1.
On London, a public key exists at /etc/ssl/certs/mysql/boston-public.pem2.
On London, a CA certificate exists at /etc/ssl/certs/mysql/ca-cert.pem3.

Secure the SSL Keys

The key files have all been owned by anonymous to this point to make creating and
copying them easier.

That's not a good idea long term, so tighten up the file permissions.

The certificates will be owned by the mysql user, (the same headless account the
MySQL process runs as). Because in normal operation the certificates don't
change, they will be marked read-only—if the certificates need to be replaced or
altered later, use sudo to intentionally escalate privileges, with appropriate logging
and access controls.

Run this procedure on both servers:

london ~ $ sudo chown -R mysql:mysql /etc/ssl/certs/mysql
london ~ $ sudo chmod a=r /etc/ssl/certs/mysql/*
london ~ $ ls -l /etc/ssl/certs/mysql
total 12
-r--r--r-- 1 mysql mysql 916 Apr 17 19:19 boston-private.pem
-r--r--r-- 1 mysql mysql 790 Apr 17 19:19 boston-public.pem
-r--r--r-- 1 mysql mysql 1580 Apr 17 19:30 ca-cert.pem
london ~ $ sudo chmod a=rx /etc/ssl/certs/mysql
london ~ $ ls -ld /etc/ssl/certs/mysql
dr-xr-xr-x 2 mysql mysql 4096 Apr 17 19:20 /etc/ssl/certs/mysql

In production, you may choose to make the files only readable by the mysql user
(u=r,go=). In the lab, the student account still needs to read the certificates to use
the interactive MySQL client.

After this step is completed:

On Boston, /etc/ssl/certs/mysql/boston-private.pem is owned by mysql with
permissions -r--r--r--

1.

On Boston, /etc/ssl/certs/mysql/boston-public.pem is owned by mysql with
permissions -r--r--r--

2.

On Boston, /etc/ssl/certs/mysql/ca-cert.pem is owned by mysql with permissions
-r--r--r--

3.

On London, /etc/ssl/certs/mysql/london-private.pem is owned by mysql with
permissions -r--r--r--

4.

On London, /etc/ssl/certs/mysql/london-public.pem is owned by mysql with
permissions -r--r--r--

5.

On London, /etc/ssl/certs/mysql/ca-cert.pem is owned by mysql with permissions
-r--r--r--

6.

11.

Connect from London to Boston with the Required Key

Connect with MySQL client from London to Boston using new keys.

A client can determine whether the current connection with the server uses SSL by
checking the value of the Ssl_cipher status variable. The value of Ssl_cipher is
nonempty if SSL is used, and empty otherwise. For example:

london ~ $ mysql -u replicator -p'ToolGrubArmyBug' -hboston.example.com \
 --ssl-ca /etc/ssl/certs/mysql/ca-cert.pem \
 --ssl-cert /etc/ssl/certs/mysql/london-public.pem \
 --ssl-key /etc/ssl/certs/mysql/london-private.pem

12.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

9 of 14 10-06-14 14:33

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

After this step is completed:

replicator can log into MySQL on Boston from London with password
ToolGrubArmyBug with a trusted key.

1.

Back up Boston

On Boston, make a complete backup, including replication master settings, and
copy it to London.

boston ~ $ mysqldump -u root --single-transaction --all-databases --master-data=1 > /tmp/master_backup.sql
-- Warning: Skipping the data of table mysql.event. Specify the --events option explicitly.
boston ~ $ scp /tmp/master_backup.sql london.example.com:/tmp/
The authenticity of host 'london.example.com (10.242.58.189)' can't be established.
RSA key fingerprint is 0f:47:42:f4:71:51:4c:a3:70:94:db:83:03:4c:d2:48.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'london.example.com,10.242.58.189' (RSA) to the list of known hosts.
anonymous@london.example.com's password: (input your password)
master_backup.sql 100% 501KB 501.3KB/s 00:00
boston ~ $

After this step is completed:

The backup file exists on Boston at /tmp/master_backup.sql1.
The backup file exists on London at /tmp/master_backup.sql2.

13.

Configure London to be a Slave

Edit my.cnf

mysql> exit
london ~ $ sudoedit /etc/my.cnf

Add these lines under the [mysql] heading. (See Establish Replication for
descriptions and the process to verify they've taken effect.)

/etc/my.cnf

[mysqld]
log_bin = mysql-bin
server_id = 20
log_slave_updates = 1
relay_log = mysql-relay-bin
read_only = 1
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
......some content not shown

Then restart the MySQL process

london ~ $ sudo service mysqld restart
Stopping mysqld: [OK]
Starting mysqld: [OK]

After this step is completed:

On London, /etc/my.cnf sets server_id to 201.

14.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

10 of 14 10-06-14 14:33

On London, /etc/my.cnf sets log_bin to mysql-bin2.
On London, /etc/my.cnf sets log_slave_updates to 13.
On London, /etc/my.cnf sets relay_log to mysql-relay-bin4.
On London, /etc/my.cnf sets read_only to 15.
On London, the MySQL variable server_id has value 206.
On London, the MySQL variable log_bin has value ON7.
On London, the MySQL variable log_slave_updates has value ON8.
On London, the MySQL variable relay_log has value ON9.
On London, the MySQL variable read_only has value ON10.

Start London Replicating from Boston

Import the backup from Boston.

You will get dozens of lines of status messages. Scan them briefly to make sure
there are no errors.

london ~ $ mysql -u root
mysql> source /tmp/master_backup.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)
......some content not shown

Configure London to replicate from Boston.

Most of these settings are the replication versions of the command line arguments
you used in Step 12

mysql> CHANGE MASTER TO
Master_Host='boston.example.com',
Master_User='replicator',
Master_Password='ToolGrubArmyBug',
Master_SSL=1,
Master_SSL_CA = '/etc/ssl/certs/mysql/ca-cert.pem',
Master_SSL_CERT = '/etc/ssl/certs/mysql/london-public.pem',
Master_SSL_KEY = '/etc/ssl/certs/mysql/london-private.pem',
Master_SSL_Verify_Server_Cert = 1;
Query OK, 0 rows affected (0.04 sec)

mysql> slave start;
Query OK, 0 rows affected (0.00 sec)

Confirm replication is running.

mysql> show slave status\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: boston.example.com
 Master_User: replicator
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000002
 Read_Master_Log_Pos: 107
 Relay_Log_File: mysql-relay-bin.000003
 Relay_Log_Pos: 253
 Relay_Master_Log_File: mysql-bin.000002

Slave_IO_Running: Yes
Slave_SQL_Running: Yes

 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:

15.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

11 of 14 10-06-14 14:33

 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 107
 Relay_Log_Space: 844
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: Yes
 Master_SSL_CA_File: /etc/ssl/certs/mysql/ca-cert.pem
 Master_SSL_CA_Path:
 Master_SSL_Cert: /etc/ssl/certs/mysql/london-public.pem
 Master_SSL_Cipher:
 Master_SSL_Key: /etc/ssl/certs/mysql/london-private.pem
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 10
1 row in set (0.00 sec)

mysql>

After this step is completed:

On London, MySQL has the database important1.
On London, MySQL has the table important.stuff2.
On London, the replication status for Master_Host is boston.example.com3.
On London, the replication status for Master_User is replicator4.
On London, the replication status for Slave_IO_Running is Yes5.
On London, the replication status for Slave_SQL_Running is Yes6.
On London, the replication status for Master_SSL_Allowed is Yes7.
On London, the replication status for Master_SSL_CA_File is /etc/ssl/certs/mysql
/ca-cert.pem

8.

On London, the replication status for Master_SSL_Cert is /etc/ssl/certs/mysql
/london-public.pem

9.

On London, the replication status for Master_SSL_Key is /etc/ssl/certs/mysql/london-
private.pem

10.

Verify Replication is Running and Encrypted

Set up a new tcpdump session on London. This time we won't run it in the
background:

london ~ $ sudo tcpdump -s 0 -A -vv host boston.example.com and port 3306
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

Now, insert some new data on the Boston server.

boston ~ $ mysql -u root

mysql> INSERT INTO important.stuff SET details='Replication is running encrypted';
Query OK, 1 row affected (0.04 sec)

mysql>

The replication packets will appear on London's tcpdump output, almost
immediately.

It's not much to look at, because the data is encrypted. The same tcpdump on an

16.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

12 of 14 10-06-14 14:33

"Don't take the author's word for
anything; prove it to yourself. Do
the exercises and invent your
own." —James Hague

We're happy to provide this how-to for anyone who needs
it. If you're in the thick of a problem, we'd like to help
where we can and stay out of your way.

unencrypted replication, would show the replicating statement in plain text.

21:01:56.285603 IP (tos 0x0, ttl 61, id 36926, offset 0, flags [DF], proto TCP (6), length
398)
 ip-10-110-179-3.ec2.internal.mysql > domU-12-31-39-06-26-67.compute-1.internal.49471:
Flags [P.], cksum 0x2e1d (correct), seq 3608204924:3608205270, ack 3612896711, win 142,
options [nop,nop,TS val 1997595 ecr 1948794], length 346
E....>@.=..Y
n..
.)....?...|.Xm............
..{....z.... 3......0.6.d.h..F.?...S.b|.+.y......0...9|.o;..2..|+.ty..5...D.>
<..H&.fxc...=y..S%.cU...C)........,..0.....M._.p Q/x.N.u..`..>...[.f...f]6..
[.ef..`.e......8..?d.1.O4.)..s.Q.#....84..ip.l)..o,i....................=....%.M..o.f...HAni......
2j..o.}..l3@Q"....N.5*..?Z...?c_.....i......L)..I&*...7.'3.
{..RL#sV...I..8a........CWo.|...!b..dIr
21:01:56.285659 IP (tos 0x8, ttl 64, id 54699, offset 0, flags [DF], proto TCP (6), length 52)
 domU-12-31-39-06-26-67.compute-1.internal.49471 > ip-10-110-179-3.ec2.internal.mysql:
Flags [.], cksum 0xf1f8 (incorrect -> 0x72d0), seq 1, ack 346, win 229, options [nop,nop,TS
val 1954733 ecr 1997595], length 0
E..4..@.@.s>
.).
n...?...Xm................
......{.

Stop tcpdump by pressing control + c

^C2 packets captured
6 packets received by filter
0 packets dropped by kernel
london ~ $

Now log back into MySQL on London and verify the row arrived.

london ~ $ mysql -u root
mysql> SELECT * FROM important.stuff ORDER BY id DESC LIMIT 1;
+-----+----------------------------------+---------------------+
| id | details | happened |
+-----+----------------------------------+---------------------+
| 306 | Replication is running encrypted | 2013-04-17 20:17:17 |
+-----+----------------------------------+---------------------+
1 row in set (0.00 sec)

mysql>

After this step is completed:

INSERT a new record on Boston in the table important.stuff1.
Within 1 second, that record is replicated to London2.

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

13 of 14 10-06-14 14:33

But if you're preparing for a project, or you'd like some
experience with advanced replication features, you should
check out our hands-on online course.

What's in the course?

© Wingtip Labs 2013 Something broken or confusing?
support@WingtipLabs.com

MySQL Documentation : Encrypt Replication Traffic http://mysql.wingtiplabs.com/documentation/ssl27...

14 of 14 10-06-14 14:33

